
CC BY-SA 3.0
© SIDN Labs
2011/0x01-v2

Authenticated Denial of Existence in the DNS

Miek Gieben, miek.gieben@sidn.nl, SIDN

Matthijs Mekking, matthijs@nlnetlabs.nl, NLnet Labs

January 2012

Abstract

Authenticated denial of existence allows a resolver to validate that a certain domain name does not exist. It is also used to signal
that a domain name exists, but does not have the specific RR type you were asking for. This document attempts to answer two
simple questions.

When returning a negative DNSSEC response, a name server sometimes includes up to two NSEC records. With
NSEC3 the maximum amount is three.

• Why do you need up to two NSEC records?

• And why does NSEC3 sometimes require an extra record?

The answer to the questions hinges on the concept of wildcards and the closest encloser. With NSEC, the name that is the closest
encloser is implicitly given in the record that also denies the existence of the domain name. With NSEC3, due to its hashing, this
information has to be given explicitly to a resolver. It needs one record to tell the resolver the closest encloser and then another
to deny the existence of the domain name. Both NSEC and NSEC3 may need yet another record to deny or assert a wildcard
presence. This results in a maximum of two NSEC and three NSEC3 records, respectively.

Introduction 1

Denial of Existence 2

NXDOMAIN . 2

NODATA . 2

Secure Denial of Existence 3

NXT . 3

NSEC . 3

NO, NSEC2 and DNSNR 5

NSEC3 . 5

Wildcards in the DNS 6

Returning Three NSEC3s 7

List of Hashed Owner Names 9

Acknowledgements 9

Changes in version two 9

Introduction

DNSSEC can be somewhat of a complicated matter, and there
are certain areas of the specification that are more difficult to
comprehend than others. One such area is “authenticated de-
nial of existence”.

Authenticated denial of existence allows a DNSSEC enabled
resolver to validate that a certain domain name does not exist.
It is also used to signal that a domain name exists, but does
not have the specific RR type you were asking for.

The first is referred to as an NXDOMAIN[1] (non-existent do-
main) and the latter an NODATA[1] response.

In this document we will explain how authenticated denial of
existenceworks. We begin by explaining the current technique
in the DNS and work our way up to DNSSEC. We explain the
first steps taken in DNSSEC and describe how NXT, NSEC and
NSEC3 work. NO, NSEC2 and DNSNR also briefly make their
appearance, as they have paved the way for NSEC3.

Page 1 of 10

To complete the picture we also need to explain DNS wildcards
as it complicates matters.

Note: In this document domain names in zone file examples
will have a trailing dot, in the running text they will not. This
text is written for people who have a fair understanding of
DNSSEC. This document currently does not explain NSEC3 opt-
out and secure delegations. This may be added in a future
revision.

The following RFCs are not required reading, but they might
help in understanding the problem space.

• RFC 5155[7] - Hashed Authenticated Denial of Existence;

• RFC 4592[8] - The Role of Wildcards in the DNS.

And these provide some general DNSSEC information.

• RFC 4033,RFC 4034, RFC 4035[2, 4, 3] - DNSSEC Spec;

• RFC 4956[5] - DNS Security (DNSSEC) Opt-In. This RFC
has the status experimental, but is a good read.

And these three drafts give some background information on
the NSEC3 development.

• tools.ietf.org/html/draft-ietf-dnsext-not-existing-rr–01;

• tools.ietf.org/html/draft-laurie-dnsext-nsec2v2–00;

• tools.ietf.org/html/draft-arends-dnsnr–00.

Denial of Existence

We start with the basics and take a look at NXDOMAIN
handling in the DNS. To make it more visible we are go-
ing to use a small DNS zone, with 3 names (example.org,
a.example.org and d.example.org) and 3 types (SOA, A
and TXT). For brevity the class is not shown (defaults to IN),
the NS records are left out and the SOA and RRSIG records are
shortened. Resulting in the following unsigned zone file:

example.org. SOA (...)
a.example.org. A 127.0.0.1

TXT ”a record”
d.example.org. A 127.0.0.1

TXT ”d record”

NXDOMAIN

If a resolver asks for the TXT type belonging to a.example.org
to the name server serving this zone, it sends the following
question: a.example.org TXT

The name server looks in its zone data and generates an an-
swer. In this case a positive one: “Yes it exists and this is the
data”, resulting in this reply:

;; status: NOERROR, id: 28203

;; ANSWER SECTION:
a.example.org. TXT ”a record”

;; AUTHORITY SECTION:
example.org. NS a.example.org.

The status: NOERROR signals that everything is OK, id is an
integer used to match questions and answers. In the ANSWER
section we find our answer. The AUTHORITY section holds
information of the name servers that have information con-
cerning the example.org domain.

If a resolver now asks for b.example.org TXT it gets an an-
swer that this name does not exist:

;; status: NXDOMAIN, id: 7042

;; AUTHORITY SECTION:
example.org. SOA (...)

In this case we do not get an ANSWER section and the sta-
tus is set to NXDOMAIN. From this the resolver concludes
b.example.org does not exist.

NODATA

It is important to realize, that NXDOMAIN is not the only
type of does-not-exist. A name may exist, but the type you
are asking for may not. This occurrence of non-existence is
called an NODATA[1] response. Let us ask our name server for
a.example.org AAAA, and look at the answer:

;; status: NOERROR, id: 7944

;; AUTHORITY SECTION:
example.org. SOA (...)

The status is NOERROR meaning that the a.example.org
name exists. But the reply does not contain an ANSWER
section. Instead it has an AUTHORITY section which holds
the SOA record of example.org. The resolver has to

AUTHENTICATED DENIAL OF EXISTENCE IN THE DNS
Page 2 of 10

put these pieces of information together and conclude that
a.example.org exists, but it does not have an AAAA record.

Secure Denial of Existence

The above has to be translated to the security aware world of
DNSSEC. But there are a few requirements DNSSEC brings to
the table:

1. There is no online signing defined in DNSSEC. Although
a name server is free to compute the answer and sig-
nature(s) on-the-fly, the protocol is written with a “first
sign”, “then load” attitude in mind 1.

2. The DNS packet header is not signed. This means that a
status: NXDOMAIN can not be trusted. In fact the entire
header may be forged, including the AD 2 bit, which may
give some food for thought;

3. DNS wildcards complicate matters significantly. More
about this in later sections.

The first requirement implies that all denial of existence an-
swers need to be pre-computed, but it is impossible to pre-
compute (all conceivable) non-existence answers. In the ex-
ample above, you need a way to tell somebody who is asking
for b.example.org that it does not exists without using the
name b.example.org in the answer. This has been solved by
introducing a record that defines an interval between two ex-
isting names. Or to put it another way: it defines the holes
(non-existing names) in the zone. This record can be signed
beforehand and given to the resolver.

Given all these troubles why didn’t the designers
of DNSSEC go for the (easy) route and allowed for
online signing? Well, at the time (pre 2000), on-
line signing was not feasible with the current hard-
ware. Keep in mind that the larger servers get be-
tween 2000 and 6000 queries per second (qps),
with peaks up to 20,000 qps or more. Scaling sig-
nature generation to these kind of levels is always a
challenge. Another issue was (and is) key manage-
ment, for online signing to work you need access
to the private key(s). This is considered a security
risk.

1 It is rather asymmetrical, but a lot of the design in DNSSEC stems from
fact that you need to accommodate authenticated denial of existence. If the
DNS didn’t have NXDOMAIN, DNSSEC would be a lot simpler, but a lot less
useful!

2AD stands for Authenticated Data, see RFC 3655[12].

The road to the current solution (NSEC/NSEC3) was long. It
started with the NXT (next) record. The NO (not existing)
record was introduced, but never made it to RFC. Later NXT
was superseded by NSEC (next secure) record. From there it
went through NSEC2/DNSNR to finally reach NSEC3 (next se-
cure, version 3) in RFC 5155.

NXT

The first attempt to specify authenticated denial of existence
was NXT (RFC 2535[6]). Section 5.1 of that RFC introduces the
record:

The NXT resource record is used to securely indicate
that RRs with an owner name in a certain name
interval do not exist in a zone and to indicate what
RR types are present for an existing name.

By specifying what you do have, you implicitly tell what you
don’t have. NXT is superseded by NSEC. In the next section
we explain how NSEC (and thus NXT) works.

NSEC

In RFC 3755[11] all the DNSSEC types were given new names,
SIG was renamed RRSIG, KEY became DNSKEY and NXT was
simply renamed to NSEC and a few, minor issues were fixed in
the process.

Just as NXT, NSEC is used to describe an interval between
names: it indirectly tells a resolver which names do not exist
in a zone.

For this to work, we need our example.org zone to be sorted
in canonical ordering (see RFC 4034, Section 6.1), and then
create the NSECs. We add three NSEC records, one for each
name, and each one “covers” a certain interval. The last NSEC
record points back to the first as required by the RFC. Also see
figure 1.

1. The first NSEC covers the interval between example.org
and a.example.org;

2. The second NSEC covers: a.example.org to
d.example.org;

3. The third NSEC points back to example.org, and cov-
ers d.example.org to example.org (i.e. the end of the
zone).

As we have defined the intervals and put those in resource
records, we now have something that can be signed.

AUTHENTICATED DENIAL OF EXISTENCE IN THE DNS
Page 3 of 10

Figure 1: The NSEC records of example.org. The ar-
rows represent NSEC records, starting from the apex.

d.example.orga.example.org

example.org

This signed zone is loaded into the name server. It looks like
this:

example.org. SOA (...)
DNSKEY (...)

NSEC a.example.org. SOA NSEC DNSKEY RRSIG
RRSIG(SOA) (...)
RRSIG(DNSKEY) (...)
RRSIG(NSEC) (...)

a.example.org. A 127.0.0.1
TXT ”a record”

NSEC d.example.org. A TXT NSEC RRSIG
RRSIG(A) (...)
RRSIG(TXT) (...)
RRSIG(NSEC) (...)

d.example.org. A 127.0.0.1
TXT ”d record”
NSEC example.org. A TXT NSEC RRSIG
RRSIG(A) (...)
RRSIG(TXT) (...)
RRSIG(NSEC) (...)

If a DNSSEC aware resolver asks for b.example.org, it gets
back a status: NXDOMAIN packet, which by itself is meaning-
less as the header can be forged. To be able to securely detect
that b does not exist, there must also be an NSEC record which
covers the name space where b lives:

a.example.org. NSEC d.example.org.

does just do that, b should come after a, but the next owner
name is d.example.org, so b does not exist.

Only by making that calculation, can a resolver conclude that
the name b does not exist. If the signature of the NSEC record
is valid, b is proven not to exist. We have: authenticated denial
of existence.

NODATA Responses

NSEC records are also used in NODATA responses. In that case
we need to look more closely at the type bit map. The type

bit map in an NSEC record tells which types are defined for
a name. If we look at the NSEC record of a.example.org
(see the reply below for an example of the record) we see the
following types in the bit map: A, TXT, NSEC and RRSIG. So
for the name a this indicates we must have an A, TXT, NSEC
and RRSIG record in the zone.

With the type bit map of the NSEC record a resolver can estab-
lish that a name is there, but the type is not. A resolver asks
for a.example.org AAAA. This is the reply that comes back:

;; status: NOERROR, id: 44638

;; AUTHORITY SECTION:
example.org. SOA (...)
example.org. RRSIG(SOA) (...)
a.example.org. NSEC d.example.org. A TXT NSEC RRSIG
a.example.org. RRSIG(NSEC) (...)

Now the resolver should check the AUTHORITY section and
conclude that:

1. a.example.org exists (because of the NSEC with that
owner name) and;

2. that the type (AAAA) does not as it is not listed in the
type bit map.

By understanding NSEC records, you have mastered the basics
of authenticated denial of existence.

But there were two issues with NSEC (and NXT). The first is
that it allows for zone walking. NSEC records point from
one name to another, in our example: example.org, points
to a.example.org which points to d.example.org which
points back to example.org. So we can reconstruct the en-
tire example.org zone even when zone transfers (AXFR) on
the server are denied.

The second issue is that when a large, delegation heavy, zone
deploys DNSSEC, every name in the zone gets an NSEC plus
RRSIG. This leads to a huge increase in the zone size (when
signed). This would in turn mean that operators of large zones
(or with a lot of zones) who are deploying DNSSEC, face up
front costs. This could hinder DNSSEC adoption.

These two issues eventually lead to NSEC3 which:

• Adds a way to garble the next owner name, thus thwart-
ing zone-walking;

• Makes it possible to skip names for the next owner name.
This feature is called opt-out. It means not all names
in your zone get an NSEC3 plus ditto signature, mak-
ing it possible to “grow into” your DNSSEC deployment.

AUTHENTICATED DENIAL OF EXISTENCE IN THE DNS
Page 4 of 10

Describing opt-out is (currently) out of scope for this
document. For those interested, opt-out is explained in
RFC 4956[5], which is curiously titled “(DNSSEC) Opt-
In”. Later this is incorporated into RFC 5155.

But before we delve in to NSEC3 lets first take a look at its
predecessors, NO, NSEC2 and DNSNR.

NO, NSEC2 and DNSNR

The NO record was the first to introduce the idea of hashed
owner names. It also fixed other shortcomings of the NXT
record. At the time (around 2000) zone walking was not con-
sidered important enough to warrant the new record. People
were also worried that deployment would be hindered by de-
veloping an alternate means of denial of existence. Thus the
effort was shelved and NXT remained. When the new DNSSEC
specification was written, NSEC saw the light and inherited the
two issues from NXT.

Several years after that NSEC2 was introduced as a way to
solve the two issues of NSEC. The NSEC2 draft contains the
following paragraph:

This document proposes an alternate scheme
which hides owner names while permitting au-
thenticated denial of existence of non-existent
names. The scheme uses two new RR types: NSEC2
and EXIST.

When an authenticated denial of existence scheme starts to
talk about EXIST records it is worth paying extra attention.

NSEC2 solved the zone walking issue, by hashing (with SHA1
and a salt) the “next owner name” in the record, thereby mak-
ing it useless for zone walking.

But it did not have opt-out. Although promising, the proposal
didn’t make it because of issues with wildcards and the odd
EXISTS resource record.

The DNSNR RR was another attempt that used hashed names
to foil zone walking and it also introduced the concept of opt-
ing out (called “Authoritative Only Flag”) which limited the
use of DNSNR in delegation heavy zones. This proposal didn’t
make it either, but it provided valuable insights into the prob-
lem.

NSEC3

From the experience gained with NSEC2 and DNSNR, NSEC3
was forged. It incorporates both opt-out and the hashing of
names. NSEC3 solves any issues people might have with NSEC,
but it introduces some additional complexity.

NSEC3 did not supersede NSEC, they are both defined for
DNSSEC. So DNSSEC is blessed with two different means to
perform authenticated denial of existence: NSEC and NSEC3.
In NSEC3 every name is hashed, including the owner name.

SHA1 is always used for the hashing. To make it even more
difficult to retrieve the original names, the hashing can be re-
peated several times each time taking the previous hash as
input. To thwart rainbow table attacks, a custom salt is also
added. In the NSEC3 for example.org we have hashed the
names twice and use the salt DEAD. Lets look at typical NSEC3
record:

15BG9L6359F5CH23E34DDUA6N1RIHL9H.example.org. (
NSEC3 1 0 2 DEAD 04SKNAPCA5AL7QOS3KM2L9TL3P5OKQ4C

SOA RRSIG DNSKEY NSEC3PARAM)

On the first line we see the hashed owner name:
15BG9L6359F5CH23E34DDUA6N1RIHL9H.example.org, this
is the hashed name of example.org. Note that even though
we hashed example.org, the zone’s name is added to make it
look like a domain name again. So un-hashed it sort of looks
like: SHA1(example.org).example.org.

The next owner name a.example.org (line 2) is hashed
to: 04SKNAPCA5AL7QOS3KM2L9TL3P5OKQ4C. Note that
.example.org is not added to the next owner name, as this
name always falls in the current zone.

The “1 0 2 DEAD” section of the NSEC3 states:

• Hash Algorithm = 1 (SHA1, this is the default, no other
hash algorithms are defined for use in NSEC3);

• Opt Out = 0 (disabled);

• Hash Iterations = 2;

• Salt = “DEAD”.

At the endwe see the type bit map, which is identical to NSEC’s
bit map, that lists the types present at the original owner name.
Note that the type NSEC3 is absent from the list in the example
above. This is due to the fact that the original owner name
(example.org) does not have the NSEC3 type. It only exists
for the hashed name.

Names like 1.h.example.org hash to one la-
bel in NSEC3, 1.h.example.org becomes:
117GERCPRCJGG8J04EV1NDRK8D1JT14K.example.org
when used as a owner name. This is an important observa-
tion. By hashing the names you loose the depth of a zone
- hashing introduces a flat space of names. As opposed to
NSEC.

AUTHENTICATED DENIAL OF EXISTENCE IN THE DNS
Page 5 of 10

In fact the domain name used above: 1.h.example.org cre-
ates an empty non-terminal. Empty non-terminals are domain
names that exist but have no RR types associated with them.

1.h.example.org. TXT ”1.h record”

Creates 2 names:

1. 1.h.example.org that has the type: TXT;

2. h.example.org which has no types. This is the empty
non-terminal.3

Slaving an NSEC3 Zone

A secondary server slaving a zone with NSEC3 records need to
find out the specifics (hash iterations and salt) to be able to
hash incoming query names.

To do this it could scan the zone during the AXFR for NSEC3
records and glance the NSEC3 parameters from them. How-
ever, it would need to make sure that there is at least one
complete set of NSEC3 records for the zone using the same
parameters. Therefore, it would need to inspect all NSEC3
records.

A more graceful solution was designed. This solution was to
create a new record, NSEC3PARAM, which must be placed
at the apex of the zone. Its sole role is to provide a single,
fixed place where a secondary name server can directly see
the NSEC3 parameters used. If NSEC3 were designed in the
early days of DNS (+/- 1985) this information was probably put
in the SOA record.

Wildcards in the DNS

In the above sections we haven’t revealed the entire story.
There is a complication: wildcards. Wildcards have been part
of the DNS since the first DNS RFCs. They allow to define all
names for a certain type in one go. In our example.org zone
we could for instance add a wildcard record:

*.example.org. TXT ”wildcard record”

For completeness our (unsigned) zone now looks like this:

example.org. SOA (...)
*.example.org. TXT ”wildcard record”
a.example.org. A 127.0.0.1

TXT ”a record”
d.example.org. A 127.0.0.1

TXT ”d record”

3An empty non-terminal will get an NSEC3 records, but not an NSEC
record.

If a resolver asks for z.example.org TXT, the name server
will respond with an expanded wildcard, instead of an NXDO-
MAIN:

;; status: NOERROR, id: 13658

;; ANSWER SECTION:
z.example.org. TXT ”wildcard record”

Note however that the resolver can not detect that this answer
came from a wildcard. It just sees the answer as-is. How will
this answer look with DNSSEC?

;; status: NOERROR, id: 51790

;; ANSWER SECTION:
z.example.org. TXT ”wildcard record”
z.example.org. RRSIG(TXT) (...)

;; AUTHORITY SECTION:
*.example.org. NSEC example.org. TXT RRSIG NSEC
*.example.org. RRSIG(NSEC) (...)

The RRSIG of the z.example.org TXT record4 indicates there
is a wildcard configured. The RDATA of the signature lists a
label count [4, Section 3.1.3.] of two (not visible in the an-
swer above), but the owner name of the signature has three
three labels. This mismatch indicates there is a wildcard con-
figured for the name *.example.org. Another hint is that
the owner name of the NSEC is *.example.org. This NSEC
proves that the queried name z.example.org does not exist,
and wildcard name expansion was indeed allowed.

One thing you may notice is that this reply has an NSEC record
in it even though it is not an NXDOMAIN nor NODATA reply.
In this case it is there to tell the resolver this answer was syn-
thesized from a wildcard.

In the reply above we see that z.example.orgwas generated
via wildcard expansion. The DNSSEC standard mandates that
an NSEC (or NSEC3) is included in such responses. If it didn’t,
an attacker could poison the cache with false data.

Suppose that the resolver would have asked for
a.example.org TXT, an attacker could modify the packet in
such way that it looks like the response was generated through
wildcard expansion, even though there exists a record for
a.example.org TXT: a.example.org. TXT ”a record”

4An astute reader may notice that it appears as if a z.example.org
RRSIG(TXT) is created out of thin air. This is not the case. The signature
for z.example.org does not exist. The signature you are seeing is the one
for *.example.org which does exist, only the owner name is switched to
z.example.org. So even with wildcards, no signatures are created on the fly.

AUTHENTICATED DENIAL OF EXISTENCE IN THE DNS
Page 6 of 10

The tweaking simply consists of adjusting the ANSWER section
to:

;; status: NOERROR, id: 31827

;; ANSWER SECTION
a.example.org. TXT ”wildcard record”
a.example.org. RRSIG(TXT) (...)

Which would be a perfectly valid answer if we would
not require the inclusion of an NSEC or NSEC3 record in
the wildcard answer response. The resolver believes that
a.example.org TXT is a wildcard record, and the real record
is obscured. This is bad and defeats all the security DNSSEC
can deliver. Because of this, the NSEC or NSEC3 should be
present.

Thus a resolver can detect such a spoofing attempt:

1. If the NSEC(3) is not present, assume the answer is
spoofed;

2. If the NSEC(3) is there, check it. If the signature is not
correct, assume a spoofed answer.

Another way of putting this is that DNSSEC is there to en-
sure the name server has followed the steps as outlined in
RFC1034[9] Section 4.3.2 for looking up names in the zone.
It explicitly lists wildcard lookup as one of these steps (3c),
so with DNSSEC this must be communicated to the resolver:
hence the NSEC(3) record.

With NSEC the maximum number of NSEC records a resolver
can get back is two: one for the denial of existence and an-
other for the wildcard. We say maximum, because sometimes
a single NSEC can prove both. With NSEC3 it is three, as to
why, we will explain in the next section.

Returning Three NSEC3s

With NSEC3 matters are even more complicated. So we have
an NSEC3 that denies the existence of the requested name and
an NSEC3 that denies wildcard synthesis. What do we miss?

The short answer is that due to the hashing in NSEC3 you
loose the depth of your zone: everything is hashed into a flat
plain. Tomake up for this loss of information you need an extra
record. The more detailed explanation is quite a bit longer…

To understand NSEC3 we will need two definitions:

Closest encloser: Introduced in RFC4592[8], this is the first
existing name (this may be an empty non-terminal) in
the zone that is an ancestor of the name used in the

query. Suppose the query name is x.2.example.org
then example.org is the closest encloser in our example;

Next closer name: Introduced in the NSEC3 RFC, this is the
closest encloser with one more label added to the left.
So if example.org is the closest encloser for the query
name x.2.example.org, 2.example.org is the next
closer name.

An NSEC3 closest encloser proof consists of:

1. An NSEC3 RR that matches the closest encloser. This
means the un-hashed owner name of the record is the
closest encloser. This bit of information tells a resolver:
“The name you are asking for does not exist, the closest
I have is this”.

2. An NSEC3 RR that covers the next closer name. This
means it defines an interval in which the next closer
name falls. This tells the resolver: “The name in your
question falls in this interval, and therefor the name in
your question does not exist. In fact, the closest encloser
is indeed the closest I have”.

Take the following example. We take our zone, but now with
the following two records and it is signed with NSEC3. 5

1.h.example.org. TXT ”1.h record”
3.3.example.org. TXT ”3.3 record”

The complete unsigned zone now looks like this.

example.org. SOA (...)
1.h.example.org. TXT ”1.h record”
3.3.example.org. TXT ”3.3 record”

The resolver asks the following: x.2.example.org TXT. This
leads to an NXDOMAIN response from the server, which con-
tains three NSEC3 records.6 Also see figure 2, the numbers in
the figure correspond with the following NSEC3 records:

15BG9L6359F5CH23E34DDUA6N1RIHL9H.example.org. (
NSEC3 1 0 2 DEAD 1AVVQN74SG75UKFVF25DGCETHGQ638EK SOA

RRSIG DNSKEY NSEC3PARAM)

75B9ID679QQOV6LDFHD8OCSHSSSB6JVQ.example.org. (
NSEC3 1 0 2 DEAD 8555T7QEGAU7PJTKSNBCHG4TD2M0JNPJ TXT

5As said these records create two non-terminals: “h.example.org” and
“3.example.org”, but that is irrelevant for the theory here.

6A list of hashed owner names can be found in the section “List of
Hashed Owner Names” on page 9.

AUTHENTICATED DENIAL OF EXISTENCE IN THE DNS
Page 7 of 10

RRSIG)

1AVVQN74SG75UKFVF25DGCETHGQ638EK.example.org. (
NSEC3 1 0 2 DEAD 75B9ID679QQOV6LDFHD8OCSHSSSB6JVQ)

If we would follow the NSEC approach, the resolver is only
interested in one thing. Does the hash of x.2.example.org
fall in any of the intervals of the NSEC3 records it got?

Figure 2: x.2.example.org does not exist. The ar-
rows represent the NSEC3 records, the thicker ones
are the NSEC3s returned in our answer.

3.example.orgh.example.org

1.h.example.org 3.3.example.org

example.org

2.example.org

x.2.example.org

1

2
3

The hash of x.2.example.org is
NDTU6DSTE50PR4A1F2QVR1V31G00I2I1. Checking this
hash on the first NSEC3 yields that it does not fall in between
the interval: 15BG9L6359F5CH23E34DDUA6N1RIHL9H and
1AVVQN74SG75UKFVF25DGCETHGQ638EK. For the second
NSEC3 the answer is also negative: the hash sorts outside the
interval described by 75B9ID679QQOV6LDFHD8OCSHSSSB6JVQ
and 8555T7QEGAU7PJTKSNBCHG4TD2M0JNPJ. And the last
NSEC3 also isn’t of any help. What is a resolver to do? It has
been given the maximum amount of NSEC3s and they all
seem useless.

A question that you might have at this point is why
doesn’t the server send an NSEC3 that covers the hash of
x.2.example.org, so the resolver can validate in one step?
While this indeed denies the existence of x.2.example.org
it is only half the answer. As explained, a denial of existence
answer needs to say something about whether or not a wild-
card should have been expanded. And to communicate which
wildcard that could have been, you need to tell the resolver
what the closest encloser is.

So this is where the closest encloser proof comes into play. And
for the proof to work, the resolver needs to know what the
closest encloser is. There must be an existing ancestor in the
zone: a name must exist that is shorter than the query name.
The resolvers keeps hashing, increasingly shorter names from
the query name until an owner name of an NSEC3 matches.
This owner name is the closest encloser.

When the resolver has found the closest encloser, the next step
is to construct the next closer name. This is the closest encloser
with the last chopped label from query name prepended to it:
“<last chopped label>.<closest encloser>”. The hash of this
name should be covered by the interval set in any of the other
NSEC3 records.

Then the resolver needs to check the presence of a wildcard.
It creates the wildcard name by prepending the wildcard label
to the closest encloser: “*.<closest encloser>”, and use the
hash of that.

Going back to our example the resolver must first detect the
NSEC3 that matches the closest encloser. It does this by chop-
ping up the query name, hashing each instance (with the same
number of iterations and hash as the zone it is querying) and
comparing that to the answers given. So it has the following
hashes to work with:

x.2.example.org: NDTU6DSTE50PR4A1F2QVR1V31G00I2I1,
last chopped label: “<empty>”;

2.example.org: 7T70DRG4EKC28V93Q7GNBLEOPA7VLP6Q,
last chopped label: “x”;

example.org: 15BG9L6359F5CH23E34DDUA6N1RIHL9H, last
chopped label: “2”;

Of these hashes only one matches the owner name of one of
the NSEC3 records: 15BG9L6359F5CH23E34DDUA6N1RIHL9H.
This must be the closest encloser (un-hashed: example.org).
That’s the main purpose of that NSEC3 record: tell the resolver
what the closest encloser is.

From that knowledge the resolver constructs the next closer,
which in this case is: 2.example.org; 2 is the last label
chopped, when example.org is the closest encloser. The hash
of this name should be covered in any of the other NSEC3s.
And it is, 7T70DRG4EKC28V93Q7GNBLEOPA7VLP6Q falls in the
interval set by: 75B9ID679QQOV6LDFHD8OCSHSSSB6JVQ and
8555T7QEGAU7PJTKSNBCHG4TD2M0JNPJ (this is our second
NSEC3).

So what does the resolver learn from this?

• example.org exists;

• 2.example.org does not exist.

And if 2.example.org does not exist, x.2.example.org also
does not exist. But only if there was no wildcard configured.
So this is the last step: check if there is a wildcard configured
at the closest encloser.

AUTHENTICATED DENIAL OF EXISTENCE IN THE DNS
Page 8 of 10

The resolver hashes *.example.org to
22670TRPLHSR72PQQMEDLTG1KDQEOLB7. Only the last
NSEC3 covers this hash. The hash falls in the inter-
val set by 1AVVQN74SG75UKFVF25DGCETHGQ638EK and
75B9ID679QQOV6LDFHD8OCSHSSSB6JVQ (this is our third
NSEC3). This means there is no wildcard at the closest
encloser and x.2.example.org definitely does not exist.

When we have validated the signatures, we reached our goal:
authenticated denial of existence.

Coming back to the original question: why do we need (up
to) three NSEC3 records? The resolver needs to be explicitly
told what the closest encloser is and this takes up a full NSEC3
record. Then the next closer name needs to be covered in an
NSEC3 record, and finally an NSEC3must say something about
the wildcard. That makes three records.

List of Hashed Owner Names

The following owner names are used in this document. The
origin for these names is example.org.

Original Name Hashed Name

@ 15BG9L6359F5CH23E34DDUA6N1RIHL9H
* 22670TRPLHSR72PQQMEDLTG1KDQEOLB7
1.h 117GERCPRCJGG8J04EV1NDRK8D1JT14K
2 7T70DRG4EKC28V93Q7GNBLEOPA7VLP6Q
3.3 8555T7QEGAU7PJTKSNBCHG4TD2M0JNPJ
3 75B9ID679QQOV6LDFHD8OCSHSSSB6JVQ
a 04SKNAPCA5AL7QOS3KM2L9TL3P5OKQ4C
b IUU8L5LMT76JELTP0BIR3TMG4U3UU8E7
h 1AVVQN74SG75UKFVF25DGCETHGQ638EK
x.2 NDTU6DSTE50PR4A1F2QVR1V31G00I2I1

Table 1: Hashed owner names for the example.org
zone.

Acknowledgements

This document would not be possible without the help of Ed
Lewis Roy Arends, Wouter Wijngaards, Olaf Kolkman, Carsten
Strotmann, Jan-Piet Mens, Marco Davids, Esther Makaay and
Antoin Verschuren. Also valuable, was the source code of Un-
bound (validator/val_nsec3.c).

For version two extensive feedback was received from Karst
Koymans.

Changes in version two

• Small corrections;

• Mention the NO resource record;

• The NSEC3 example now returns three NSEC3 records;

• Empty non-terminals are explained.

References

[1] M. Andrews. Negative Caching of DNS Queries (DNS
NCACHE). RFC 2308 (Proposed Standard), March 1998.
Updated by RFCs 4035, 4033, 4034.

[2] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose.
DNS Security Introduction and Requirements. RFC 4033
(Proposed Standard), March 2005. Updated by RFC
6014.

[3] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose.
Protocol Modifications for the DNS Security Extensions.
RFC 4035 (Proposed Standard), March 2005. Updated
by RFCs 4470, 6014.

[4] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose.
Resource Records for the DNS Security Extensions. RFC
4034 (Proposed Standard), March 2005. Updated by
RFCs 4470, 6014.

[5] R. Arends, M. Kosters, and D. Blacka. DNS Security
(DNSSEC) Opt-In. RFC 4956 (Experimental), July 2007.

[6] D. Eastlake 3rd. Domain Name System Security Exten-
sions. RFC 2535 (Proposed Standard), March 1999. Ob-
soleted by RFCs 4033, 4034, 4035, updated by RFCs
2931, 3007, 3008, 3090, 3226, 3445, 3597, 3655,
3658, 3755, 3757, 3845.

[7] B. Laurie, G. Sisson, R. Arends, and D. Blacka. DNS Secu-
rity (DNSSEC) Hashed Authenticated Denial of Existence.
RFC 5155 (Proposed Standard), March 2008.

[8] E. Lewis. The Role of Wildcards in the Domain Name
System. RFC 4592 (Proposed Standard), July 2006.

[9] P.V. Mockapetris. Domain names - concepts and facili-
ties. RFC 1034 (Standard), November 1987. Updated by
RFCs 1101, 1183, 1348, 1876, 1982, 2065, 2181, 2308,
2535, 4033, 4034, 4035, 4343, 4035, 4592, 5936.

[10] J. Schlyter. DNS Security (DNSSEC) NextSECure (NSEC)
RDATA Format. RFC 3845 (Proposed Standard), August
2004. Obsoleted by RFCs 4033, 4034, 4035.

AUTHENTICATED DENIAL OF EXISTENCE IN THE DNS
Page 9 of 10

[11] S. Weiler. Legacy Resolver Compatibility for Delegation
Signer (DS). RFC 3755 (Proposed Standard), May 2004.
Obsoleted by RFCs 4033, 4034, 4035, updated by RFCs
3757, 3845.

[12] B. Wellington and O. Gudmundsson. Redefinition of DNS
Authenticated Data (AD) bit. RFC 3655 (Proposed Stan-
dard), November 2003. Obsoleted by RFCs 4033, 4034,
4035.

AUTHENTICATED DENIAL OF EXISTENCE IN THE DNS
Page 10 of 10

	Introduction
	Denial of Existence
	NXDOMAIN
	NODATA

	Secure Denial of Existence
	NXT
	NSEC
	NO, NSEC2 and DNSNR
	NSEC3
	Wildcards in the DNS
	Returning Three NSEC3s

	List of Hashed Owner Names
	Acknowledgements
	Changes in version two

