
CC BY-SA 3.0
© SIDN Labs
2011/0x01-v1

Authenticated Denial of Existence in the DNS— OBSOLETED BY VERSION v2

Miek Gieben, miek.gieben@sidn.nl, SIDN

Matthijs Mekking, matthijs@nlnetlabs.nl, NLnet Labs

September 2011

Abstract

Authenticated denial of existence allows a resolver to validate that a certain domain name does not exist. It is also used to signal
that a domain name exists, but does not have the specific RR type you were asking for. This document attempts to answer two
simple questions.

When returning a negative DNSSEC response, a name server sometimes includes up to two NSEC records. With
NSEC3 the maximum amount is three.

• Why do you need up to two NSEC records?

• And why does NSEC3 sometimes requires an extra record?

The answers to the questions hinges on the concept of wildcards and the closest encloser. With NSEC, the name that is the
closest encloser is implicitly given in the record that also denies the existence of the domain name. With NSEC3, due to its
hashing, this information has to be given explicitly to a resolver. It needs one record to tell the resolver the closest encloser and
then another to deny the existence of the domain name. Both NSEC and NSEC3 may need yet another record to deny or assert
a wildcard presence at the closest encloser name. This results in a maximum of two NSEC and three NSEC3 records, respectively.

Introduction 1

Denial of Existence 2

NXDOMAIN . 2

NODATA . 2

Secure Denial of Existence 2

NXT . 3

NSEC . 3

NSEC2 and DNSNR 4

NSEC3 . 5

Wildcards in the DNS 5

Returning Three NSEC3s 6

Acknowledgements 8

Introduction

DNSSEC can be somewhat of a complicated matter, and there
are certain corners of the specification that are more difficult to

comprehend than others. One such corner is “authenticated
denial of existence”.

Authenticated denial of existence allows a DNSSEC enabled
resolver to validate that a certain domain name does not exist.
It is also used to signal that a domain name exists, but does
not have the specific RR type you were asking for.

The first is referred to as a NXDOMAIN (non-existent domain)
and the latter a NODATA response.

In this document we will explain how authenticated denial of
existenceworks. We begin by explaining the current technique
in the DNS and work our way up to DNSSEC. We explain the
first steps taken in DNSSEC and describe how NXT, NSEC and
NSEC3 work. NSEC2 and DNSNR also briefly make their ap-
pearance, as they have paved the way for NSEC3.

To complete the picture we also need to explain DNS wildcards
as it complicates matters.

Note: In this document domain names in zone file examples
will have a trailing dot, in the running text they will not. This
text is written for people who have a fair understanding of

Page 1 of 8

DNSSEC. This document currently does not explain NSEC3 opt-
out and secure delegations. This may be added in a future
revision.

The following RFCs are not required reading, but they might
help in understanding the problem space.

• RFC 5155[6] - Hashed Authenticated Denial of Existence;

• RFC 4592[7] - The Role of Wildcards in the DNS.

And these provide some general DNSSEC information.

• RFC 4033,RFC 4034, RFC 4035[1, 3, 2] - DNSSEC Spec;

• RFC 4956[4] - DNS Security (DNSSEC) Opt-In. This RFC
has the status experimental, but is a good read.

And these two drafts give some background information on
the NSEC3 development.

• tools.ietf.org/html/draft-laurie-dnsext-nsec2v2–00;

• tools.ietf.org/html/draft-arends-dnsnr–00.

Denial of Existence

We start with the basics and take a look at NXDOMAIN
handling in the DNS. To make it more visible we are go-
ing to use a small DNS zone, with 3 names (example.org,
a.example.org and d.example.org) and 3 types (SOA, A
and TXT). For brevity the class is not shown (defaults to IN),
the NS records are left out and the SOA and RRSIG record are
shortened. Resulting in the following unsigned zone file:

example.org. SOA (...)
a.example.org. A 127.0.0.1

TXT ”a record”
d.example.org. A 127.0.0.1

TXT ”d record”

NXDOMAIN

If a resolver asks for the TXT type belonging to a.example.org
to the name server serving this zone, it sends the following
question: a.example.org TXT

The name server looks in its zone data and generates an an-
swer. In this case a positive one: “Yes it exists and this is the
data”, resulting in this reply:

;; status: NOERROR, id: 28203

;; ANSWER SECTION:
a.example.org. TXT ”a record”

;; AUTHORITY SECTION:
example.org. NS ns1.example.org.

The status: NOERROR signals that everything is OK, id is an
integer used to match questions and answers. In the ANSWER
section we find our answer. The AUTHORITY section holds
information of the name servers that have information con-
cerning the example.org domain.

If a resolver now asks for b.example.org TXT it gets an an-
swer that this name does not exist:

;; status: NXDOMAIN, id: 7042

;; AUTHORITY SECTION:
example.org. SOA (...)

In this case we do not get an ANSWER section and the sta-
tus is set to NXDOMAIN. From this the resolver concludes
b.example.org does not exist.

NODATA

It is important to realize, that NXDOMAIN is not the only
type of does-not-exist. A name may exist, but the type you
are asking for may not. This occurrence of non-existence
is called a NODATA response. Lets ask our name server for
a.example.org AAAA, and look at the answer:

;; status: NOERROR, id: 7944

;; AUTHORITY SECTION:
example.org. SOA (...)

The status is NOERRORmeaning that the a.example.org name
exists. But the reply does not contain an ANSWER section. In-
stead it has an AUTHORITY section which holds the SOA record
of example.org. The resolver has to put these pieces of in-
formation together and conclude that a.example.org exists,
but it does not have an AAAA record.

Secure Denial of Existence

The above has to be translated to the security aware world of
DNSSEC. But there are a few requirements DNSSEC brings to
the table:

AUTHENTICATED DENIAL OF EXISTENCE IN THE DNS — OBSOLETED BY VERSION V2
Page 2 of 8

1. There is no online signing defined in DNSSEC. Although
a name server is free to compute the answer and signa-
ture(s) on-the-fly - PowerDNSSEC does this for instance
- the protocol is written with a “first sign”, “then load”
attitude in mind 1.

2. The DNS packet header is not signed. This means that a
status: NXDOMAIN can not be trusted. In fact the entire
header may be forged, including the AD 2 bit, which may
give some food for thought;

3. DNS wildcards complicate matters. More about this in
later sections.

The first requirement implies that all denial of existence an-
swers need to be pre-computed, but it is impossible to pre-
compute (all conceivable) non-existence answers. In the ex-
ample above, you need a way to tell somebody who is asking
for b.example.org that it does not exists without using the
name b.example.org in the answer. This has been solved by
introducing a record that defines an interval between two ex-
isting names. Or to put it another way: it defines the holes
(non-existing names) in the zone. This record can be signed
beforehand and given to the resolver.

Given all these troubles why didn’t the designers
of DNSSEC went for the (easy) route and allowed
for online signing? Well, at the time (pre 2000),
online signing was not feasible with the current
hardware. Keep in mind that the larger servers get
between 2000 and 6000 queries per second (qps),
with peaks up to 20,000 qps or more. Scaling sig-
nature generation to these kind of levels is always a
challenge. Another issue was (and is) key manage-
ment, for online signing to work you need access
to the private key(s). This is considered a security
risk.

The road to the current solution (NSEC/NSEC3) was long. It
started with the NXT (next) record, which was superseded
by NSEC (next secure) record. From there it went through
NSEC2/DNSNR to finally reached NSEC3 (next secure, version
3) in RFC 5155.

1 It is rather asymmetrical, but a lot of the design in DNSSEC stems from
fact that you need to accommodate authenticated denial of existence. If the
DNS didn’t have NXDOMAIN, DNSSEC would be a lot simpler, but a lot less
useful!

2AD stands for Authenticated Data, see RFC 3655[11].

NXT

The first attempt to specify authenticated denial of existence
was NXT (RFC 2535[5]). Section 5.1 of that RFC introduces the
record:

The NXT resource record is used to securely indicate
that RRs with an owner name in a certain name
interval do not exist in a zone and to indicate what
RR types are present for an existing name.

By specifying what you do have, you implicitly tell what you
don’t have. NXT is superseded by NSEC. In the next section
we explain how NSEC (and thus NXT) works.

NSEC

In RFC 3755[10] all the DNSSEC types were given new names,
SIG was renamed RRSIG, KEY became DNSKEY and NXT was
simply renamed to NSEC and a few, minor issues were fixed in
the process.

Just as NXT, NSEC is used to describe an interval between
names: it indirectly tells a resolver which names do not exist
in a zone.

For this to work, we need our example.org zone to be sorted
in canonical ordering (see RFC 4034, Section 6.1), and then
create the NSECs. We add three NSEC records, one for each
name, and each one “covers” a certain interval. The last NSEC
record points back to the first as required by the RFC.

1. The first NSEC covers the interval between example.org
and a.example.org;

2. The second NSEC covers: a.example.org to
d.example.org;

3. The third NSEC points back to example.org, and cov-
ers d.example.org to example.org (i.e. the end of the
zone).

As we have defined the intervals and put those in resource
records, we now have something that can be signed. This
signed zone is loaded into the name server. It looks like this:

example.org. SOA (...)
DNSKEY (...)

NSEC a.example.org. SOA NSEC DNSKEY RRSIG
RRSIG(SOA) (...)
RRSIG(DNSKEY) (...)
RRSIG(NSEC) (...)

a.example.org. A 127.0.0.1
TXT ”a record”

AUTHENTICATED DENIAL OF EXISTENCE IN THE DNS — OBSOLETED BY VERSION V2
Page 3 of 8

NSEC b.example.org. A TXT NSEC RRSIG
RRSIG(A) (...)
RRSIG(TXT) (...)
RRSIG(NSEC) (...)

d.example.org. A 127.0.0.1
TXT ”d record”
NSEC example.org. A TXT NSEC RRSIG
RRSIG(A) (...)
RRSIG(TXT) (...)
RRSIG(NSEC) (...)

If a DNSSEC aware resolver asks for b.example.org, it gets
back a status: NXDOMAIN packet, which by itself is meaning-
less as the header can be forged. To be able to securely detect
that b does not exist, there must also be an NSEC record which
covers the name space where b lives:

a.example.org. NSEC d.example.org.

does just do that, b should come after a, but the next owner
name is d.example.org so, b does not exist.

Only by making that calculation, can a resolver conclude that
the name b does not exist. If the signature of the NSEC record
is valid, b is proven not to exist. We have: authenticated denial
of existence.

NODATA Responses

NSEC records are also used in NODATA responses. In that case
we need to look more closely at the type bit map. The type
bit map in an NSEC record tells which types are defined for
a name. If we look at the NSEC record of a.example.org
(see the reply below for an example of the record) we see the
following types in the bit map: A, TXT, NSEC and RRSIG. So
for the name a this indicates we must have an A, TXT, NSEC
and RRSIG record in the zone.

With the type bit map of the NSEC record a resolver can estab-
lish that a name is there, but the type is not. A resolver asks
for a.example.org AAAA. This is the reply that comes back:

;; status: NOERROR, id: 44638

;; AUTHORITY SECTION:
example.org. SOA (...)
example.org. RRSIG(SOA) (...)
a.example.org. NSEC d.example.org. A TXT NSEC RRSIG
a.example.org. RRSIG(NSEC) (...)

Now the resolver should check the AUTHORITY section and
conclude that:

1. a.example.org exists (because of the NSEC with that
owner name) and;

2. that the type (AAAA) does not as it is not listed in the
type bit map.

By understanding NSEC records, you have mastered the basics
of authenticated denial of existence.

But there were two issues with NSEC (and NXT). The first is
that it allows for zone walking. NSEC records point from
one name to another, in our example: example.org, points
to a.example.org which points to d.example.org which
points back to example.org. So we can reconstruct the en-
tire example.org zone even when zone transfers (AXFR) on
the server are denied.

The second issue is that when a large, delegation heavy, zone
deploys DNSSEC, every name in the zone gets an NSEC plus
RRSIG. This leads to a huge increase in the zone size (when
signed). This would in turn mean that operators of large zones
(or with a lot of zones) who are deploying DNSSEC, face up
front costs. This could hinder DNSSEC adoption.

These two issues eventually lead to NSEC3 which:

• Adds a way to garble the next owner name, thus thwart-
ing zone-walking;

• Makes it possible to skip names for the next owner name.
This feature is called opt-out. It means not all names
in your zone get an NSEC3 plus ditto signature, mak-
ing it possible to “grow into” your DNSSEC deployment.
Describing opt-out is (currently) out of scope for this
document. For those interested, opt-out is explained in
RFC 4956[4], which is curiously titled “(DNSSEC) Opt-
In”. Later this is incorporated into RFC 5155.

But before we delve in to NSEC3 lets first take a look at its
predecessors, NSEC2 and DNSNR.

NSEC2 and DNSNR

NSEC2 was introduced as a way to solve the two issues of
NSEC. The NSEC2 draft contains the following paragraph:

This document proposes an alternate scheme
which hides owner names while permitting au-
thenticated denial of existence of non-existent
names. The scheme uses two new RR types: NSEC2
and EXIST.

AUTHENTICATED DENIAL OF EXISTENCE IN THE DNS — OBSOLETED BY VERSION V2
Page 4 of 8

When an authenticated denial of existence scheme starts to
talk about EXIST records it is worth paying extra attention.

NSEC2 solved the zone walking issue, by hashing (with SHA1
and a salt) the “next owner name” in the record, thereby mak-
ing it useless for zone walking.

But it did not have opt-out. Although promising, the proposal
didn’t make it because of issues with wildcards and the odd
EXISTS resource record.

The DNSNR RR was another attempt that used hashed names
to foil zone walking and it also introduced the concept of opt-
ing out (called “Authoritative Only Flag”) which limited the
use of DNSNR in delegation heavy zones. This proposal didn’t
make it either, but it provided valuable insights into the prob-
lem.

NSEC3

From the experience gained with NSEC2 and DNSNR, NSEC3
was forged. It incorporates both opt-out and the hashing of
names. NSEC3 solves any issues people might have with NSEC,
but it introduces some additional complexity.

NSEC3 did not supersede NSEC, they are both defined for
DNSSEC. So DNSSEC is blessed with two different means to
perform authenticated denial of existence: NSEC and NSEC3.
In NSEC3 every name is hashed, including the owner name.

SHA1 is used for the hashing. To make it even more difficult
to retrieve the original names, the hashing can be repeated
several times each time taking the previous hash as input. To
thwart rainbow table attacks, a custom salt is also added. In
the NSEC3 for example.orgwe have hashed the names twice
and use the salt DEAD. Lets look at typical NSEC3 record:

15BG9L6359F5CH23E34DDUA6N1RIHL9H.example.org. (
NSEC3 1 0 2 DEAD 22670TRPLHSR72PQQMEDLTG1KDQEOLB7

NS SOA RRSIG DNSKEY NSEC3PARAM)

On the first line we see the hashed owner name:
15BG9L6359F5CH23E34DDUA6N1RIHL9H.example.org, this
is the hashed name of example.org. Note that even though
we hashed example.org, the zone’s name is added to make it
look like a domain name again. So un-hashed it sort of looks
like: SHA1(example.org).example.org.

The next owner name (line 2) is hashed to:
22670TRPLHSR72PQQMEDLTG1KDQEOLB7. Note that
.example.org is not added to the next owner name,
as this name always falls in the current zone.

The “1 0 2 DEAD” section of the NSEC3 states:

• Hash Algorithm = 1 (SHA1);

• Opt Out = 0 (disabled);

• Hash Iterations = 2;

• Salt = “DEAD”.

At the end we see the type bit map which is identi-
cal to NSEC’s bit map. Names like a.b.c.example.org
hash to one label in NSEC3, a.b.c.example.org becomes:
6LQ07OAHBTOOEU2R9ANI2AT70K5O0RCG.example.org when
used as a owner name.

This is an important observation. By hashing the names you
loose the depth of a zone - hashing introduces a flat space of
names. As opposed to NSEC.

Slaving an NSEC3 Zone

A secondary servers slaving a zone with NSEC3 records need
to find out the specifics (hash iterations and salt) to be able to
generate its own NSEC3 records.

To do this it could scan the zone during the AXFR for NSEC3
records and glance the NSEC3 parameters from them. How-
ever, it would need to make sure that there is at least one com-
plete set of NSEC3 records for the zone using the same param-
eters. Therefor, it would need to inspect all NSEC3 records.

A more graceful solution was designed. This solution was to
create a new record, NSEC3PARAM, which must be placed
at the apex of the zone. Its sole role is to provide a single,
fixed place where a secondary name server can directly see
the NSEC3 parameters used. If NSEC3 were designed in the
early days of DNS (+/- 1985) this information was probably put
in the SOA record.

Wildcards in the DNS

In the above sections we haven’t revealed the entire story.
There is a complication: wildcards. Wildcards have been part
of the DNS since the first DNS RFCs. They allow to define all
names for a certain type in one go. In our example.org zone
we could for instance include a wildcard record:

*.example.org. TXT ”wildcard record”

If a resolver asks for z.example.org TXT, the name server
will respond with an expanded wildcard, instead of an NXDO-
MAIN:

;; status: NOERROR, id: 13658

;; ANSWER SECTION:
z.example.org. TXT ”wildcard record”

AUTHENTICATED DENIAL OF EXISTENCE IN THE DNS — OBSOLETED BY VERSION V2
Page 5 of 8

Note however that the resolver can not detect that this answer
came from a wildcard. It just sees the answer as-is. How will
this answer look with DNSSEC?

;; status: NOERROR, id: 51790

;; ANSWER SECTION:
z.example.org. TXT ”wildcard record”
z.example.org. RRSIG(TXT) (...)

;; AUTHORITY SECTION:
*.example.org. NSEC example.org. A TXT RRSIG NSEC
*.example.org. RRSIG(NSEC) (...)

The NSEC in the AUTHORITY section of the answer above in-
dicates there is a wildcard configured in this zone. In this case
it is easy to spot because the owner name of the NSEC is
*.example.org.3

One thing you should notice is that this reply has an NSEC
record in it even though it is not an NXDOMAIN nor NODATA
reply. In this case it is there to tell the resolver this answer was
synthesized from a wildcard.

In the reply above we see that z.example.orgwas generated
via wildcard expansion. The DNSSEC standard mandates that
an NSEC (or NSEC3) is included in such responses. If it didn’t,
an attacker could poison the cache with false data.

Suppose that the resolver would have asked for
a.example.org TXT, an attacker could modify the
packet in such way that it looks like the response was
generated through wildcard expansion, even though there
exists a record for a.example.org TXT:

a.example.org. TXT ”a record”

The tweaking simply consists of adjusting the ANSWER section
to:

;; status: NOERROR, id: 31827

;; ANSWER SECTION
a.example.org. TXT ”wildcard record”
a.example.org. RRSIG(TXT) (...)

Which would be a perfectly valid answer if we would
not require the inclusion of a NSEC or NSEC3 record in

3An astute reader may notice that it appears as if a z.example.org
RRSIG is created out of thin air. This is not the case. The signature for
z.example.org does not exist. The signature you are seeing is the one
for *.example.org which does exist, only the owner name is switched to
z.example.org. So even with wildcards, no signatures are created on the fly.

the wildcard answer response. The resolver believes that
a.example.org TXT is a wildcard record, and the real record
is obscured. This is bad and defeats all the security DNSSEC
can deliver. Because of this, the NSEC or NSEC3 should be
present.

Thus a resolver can detect such a spoofing attempt:

1. If the NSEC(3) is not present, assume the answer is
spoofed;

2. If the NSEC(3) is there, check it. If the signature is not
correct, assume a spoofed answer.

Another way of putting this is that DNSSEC is there to en-
sure the name server has followed the steps as outlined in
RFC1034[8] Section 4.3.2 for looking up names in the zone. It
explicitly lists wildcard lookup as on of these steps (3c), so with
DNSSEC this must be communicated to the resolver: hence the
NSEC(3) record.

With NSEC the maximum number of NSEC records a resolver
can get back is two: one for the negative answer and another
one for the wildcard. We say maximum, because sometimes
a single NSEC can prove both. With NSEC3 it is three, as to
why, we will explain in the next section.

Returning Three NSEC3s

With NSEC3 matters are even more complicated. So we have
an NSEC3 that denies the existence of the requested name and
an NSEC3 that denies wildcard synthesis. What do we miss?

The short answer is that due to the hashing in NSEC3 you
loose the depth of your zone: everything is hashed into a flat
plain. Tomake up for this loss of information you need an extra
record. The more detailed explanation is quite a bit longer…

To understand NSEC3 we will need two definitions:

Closest encloser: Introduced in RFC4592[7], this is the first
existing name in the zone that is an ancestor of the
name used in the query. Suppose the query name is
x.2.example.org then example.org is the closest en-
closer in our example;

Next closer name: Introduced in the NSEC3 RFC, this is the
closest encloser with one more label added to the left.
So if example.org is the closest encloser for the query
name x.2.example.org, 2.example.org is the next
closer name.

A NSEC3 closest encloser proof consists of:

AUTHENTICATED DENIAL OF EXISTENCE IN THE DNS — OBSOLETED BY VERSION V2
Page 6 of 8

1. An NSEC3 RR that matches the closest encloser. This
means the un-hashed owner name of the record is the
closest encloser. This bit of information tells a resolver:
“The name you are asking for does not exists, the closest
I have is this”.

2. An NSEC3 RR that covers the next closer name. This
means it defines an interval in which the next closer
name falls. This tells the resolver: “The name in your
question falls in this interval, and therefor the name in
your question does not. In fact, the closest encloser is
indeed the closest I have”.

Take the following example. We have our zone, but now with
the following two records and it is signed with NSEC3. 4

1.1.example.org. TXT ”1.1 record”
3.3.example.org TXT ”3.3 record”

The resolver asks the following: x.2.example.org TXT. This
leads to an NXDOMAIN response from the server, which con-
tains two NSEC3 records:

15BG9L6359F5CH23E34DDUA6N1RIHL9H.example.org. (
NSEC3 1 0 2 DEAD 3GM0KCUB31AM5C8R6SKFK1DKIE7HP1PB NS SOA

RRSIG DNSKEY NSEC3PARAM)

75B9ID679QQOV6LDFHD8OCSHSSSB6JVQ.example.org. (
NSEC3 1 0 2 DEAD 8555T7QEGAU7PJTKSNBCHG4TD2M0JNPJ)

If we would follow the NSEC approach, the resolver is only
interested in one thing. Does the hash of x.2.example.org
fall in any of the intervals of the NSEC3 records it got?

The hash of x.2.example.org is
NDTU6DSTE50PR4A1F2QVR1V31G00I2I1. Checking this
hash on the first NSEC3 yields that it does not fall in between
the interval: 15BG9L6359F5CH23E34DDUA6N1RIHL9H and
3GM0KCUB31AM5C8R6SKFK1DKIE7HP1PB.

For the second NSEC3 the answer is also negative: the hash
sorts outside the interval described. What is a resolver to do?
It has been given two NSEC3 and both seem useless.

A question that you might have at this point is why
doesn’t the server send a NSEC3 that covers the
hash of x.2.example.org, so the resolver can val-
idate in one step?

The reason for that this does not work is that with
NSEC3 we have lost the depth of the zone. Be-
cause there might be one or more labels between

4These records are empty non-terminals, but that is irrelevant.

the closest encloser and the name from the ques-
tion you have to prove that the closest encloser as-
serted is really the closest you can get. Only at that
level, we can assert or deny the presence of a wild-
card record. With NSEC, that closest encloser is al-
ways implicitly given in the record that denies the
name from the question.

This is where the closest encloser proof comes into play. And
for the proof to work, the resolver needs to know what the
closest encloser is. There must be an existing ancestor in zone:
a name must exist that is shorter than the query name. The
resolvers keeps hashing, increasingly shorter names from the
query name until an owner name of a NSEC3 matches. This
owner name is the closest encloser.

When the resolver has found the closest encloser, the next
step is to construct the next closer name. This is the closest
encloser with the last chopped label from qname prepended
to it: “<last chopped label>.<closest encloser>”. The hash of
this name should be covered by the interval set in the other
NSEC3 record.

Then the resolver needs to check the presence of a wildcard.
It creates the wildcard name by prepending the wildcard label
to the closest encloser: “*.<closest encloser>”, and use the
hash of that.

Going back to our example the resolver must first detect the
NSEC3 that matches the closest encloser. It does this by chop-
ping up the query name, hashing each instance (with the same
number of iterations and hash as the zone it is querying) and
comparing that to the answers given. So it has the following
hashes to work with:

• x.2.example.org: NDTU6DSTE50PR4A1F2QVR1V31G00I2I1,
last chopped label: “<empty>”;

• 2.example.org: 7T70DRG4EKC28V93Q7GNBLEOPA7VLP6Q,
last chopped label: “x”;

• example.org: 15BG9L6359F5CH23E34DDUA6N1RIHL9H,
last chopped label: “2”;

• org: B7ID5C04KP39ULGGCNJQ2MJ36ABG4F0C, last
chopped label “example”;

• .: BH3S9AFOU5K41TIJF5HS8IS9HR2QEJU8, last
chopped label “org”.

Of these hashes only one matches the owner name of one of
the NSEC3 records: 15BG9L6359F5CH23E34DDUA6N1RIHL9H.
This is the closest encloser (un-hashed: example.org). That’s

AUTHENTICATED DENIAL OF EXISTENCE IN THE DNS — OBSOLETED BY VERSION V2
Page 7 of 8

the main purpose of that NSEC3 record: tell the resolver what
the closest encloser is.

From that knowledge the resolver constructs the next closer,
which in this case is: 2.example.org; 2 is the last label
chopped, when example.org is the closest encloser. The
hash of this name should be covered in the other NSEC3.
And it is, 7T70DRG4EKC28V93Q7GNBLEOPA7VLP6Q falls in the
interval set by: 75B9ID679QQOV6LDFHD8OCSHSSSB6JVQ and
8555T7QEGAU7PJTKSNBCHG4TD2M0JNPJ.

So what does the resolver learn from this?

1. example.org exists;

2. 2.example.org does not exist.

And if 2.example.org does not exist, x.2.example.org also
does not exist. But only if there was no wildcard configured.
So this is the last step: check if there is a wildcard configured
at the closest encloser.

The resolver hashes *.example.org to
22670TRPLHSR72PQQMEDLTG1KDQEOLB7. This hash
is covered by the same NSEC3 record that matches
the closest encloser: the hash falls in the interval
set by 15BG9L6359F5CH23E34DDUA6N1RIHL9H and
3GM0KCUB31AM5C8R6SKFK1DKIE7HP1PB. This means there is
no wildcard at the closest encloser and x.2.example.org
definitely does not exist.

When we have validated the signatures, we reached our goal:
authenticated denial of existence.

Coming back to the original question: why do we need (up
to) three NSEC3 records? The resolver needs to be explicitly
told what the closest encloser is and this takes up a full NSEC3
record. Then the next closer name needs to be covered in a
NSEC3 record, and finally a NSEC3 must say something about
the wildcard. That makes three records.

Acknowledgements

This document would not be possible without the help of Ed
Lewis Roy Arends, Wouter Wijngaards, Marco Davids, Esther
Makaay and Antoin Verschuren. Also valuable, was the source
code of Unbound (validator/val_nsec3.c).

References

[1] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose.
DNS Security Introduction and Requirements. RFC 4033
(Proposed Standard), March 2005. Updated by RFC
6014.

[2] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose.
Protocol Modifications for the DNS Security Extensions.
RFC 4035 (Proposed Standard), March 2005. Updated
by RFCs 4470, 6014.

[3] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose.
Resource Records for the DNS Security Extensions. RFC
4034 (Proposed Standard), March 2005. Updated by
RFCs 4470, 6014.

[4] R. Arends, M. Kosters, and D. Blacka. DNS Security
(DNSSEC) Opt-In. RFC 4956 (Experimental), July 2007.

[5] D. Eastlake 3rd. Domain Name System Security Exten-
sions. RFC 2535 (Proposed Standard), March 1999. Ob-
soleted by RFCs 4033, 4034, 4035, updated by RFCs
2931, 3007, 3008, 3090, 3226, 3445, 3597, 3655,
3658, 3755, 3757, 3845.

[6] B. Laurie, G. Sisson, R. Arends, and D. Blacka. DNS Secu-
rity (DNSSEC) Hashed Authenticated Denial of Existence.
RFC 5155 (Proposed Standard), March 2008.

[7] E. Lewis. The Role of Wildcards in the Domain Name
System. RFC 4592 (Proposed Standard), July 2006.

[8] P.V. Mockapetris. Domain names - concepts and facili-
ties. RFC 1034 (Standard), November 1987. Updated by
RFCs 1101, 1183, 1348, 1876, 1982, 2065, 2181, 2308,
2535, 4033, 4034, 4035, 4343, 4035, 4592, 5936.

[9] J. Schlyter. DNS Security (DNSSEC) NextSECure (NSEC)
RDATA Format. RFC 3845 (Proposed Standard), August
2004. Obsoleted by RFCs 4033, 4034, 4035.

[10] S. Weiler. Legacy Resolver Compatibility for Delegation
Signer (DS). RFC 3755 (Proposed Standard), May 2004.
Obsoleted by RFCs 4033, 4034, 4035, updated by RFCs
3757, 3845.

[11] B. Wellington and O. Gudmundsson. Redefinition of DNS
Authenticated Data (AD) bit. RFC 3655 (Proposed Stan-
dard), November 2003. Obsoleted by RFCs 4033, 4034,
4035.

AUTHENTICATED DENIAL OF EXISTENCE IN THE DNS — OBSOLETED BY VERSION V2
Page 8 of 8

	Introduction
	Denial of Existence
	NXDOMAIN
	NODATA

	Secure Denial of Existence
	NXT
	NSEC
	NSEC2 and DNSNR
	NSEC3
	Wildcards in the DNS
	Returning Three NSEC3s

	Acknowledgements

