
Learning Go
Go 1

Author:
Miek Gieben

Thanks to:
Go Authors, Google

With the help and contributions from:

(in alphabetical order)

Andrey Mirtchovski, Anthony Magro, Babu Sreekanth, Ben Bullock, Bob Cunningham,
Brian Fallik, Cecil New, Damian Gryski, Dan Kortschak, Filip Zaludek, Haiping Fan, Jaap

Akkerhuis, JC van Winkel, Jeroen Bulten, Jinpu Hu, Jonathan Kans,Makoto Inoue,
Mayuresh Kathe,Michael Stapelberg, Olexandr Shalakhin, Paulo Pinto, Peter Kleiweg,

Russel Winder, Sonia Keys, Stefan Schroeder, Thomas Kapplet, T.J. Yang, Uriel, Xing Xing.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Miek Gieben – ©2010 - 2012

This work is licensed under the Attribution-NonCommercial-ShareAlike 3.0 Unported
License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

All example code used in this book is hereby put in the public domain.

“Learning Go” has been translated into:

• Chinese, by Xing Xing, 这里是中文译本.

http://www.mikespook.com/learning-go/

• Russian, by Michael Davydenko and is coming soon™.

Learning as we Go (1.0)
Supports the Go 1 release

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.mikespook.com/learning-go/

Contents

1 Introduction 1
Official documentation . 1
Origins . 2
Getting Go . 3
Getting Go for Windows . 3
Exercises . 4
Answers . 5

2 Basics 6
Hello World . 7
Compiling and running code . 7
Settings used in this book . 8
Variables, types and keywords . 8
Operators and built-in functions . 12
Go keywords . 12
Control structures . 13
Built-in functions . 18
Arrays, slices and maps . 19
Exercises . 23
Answers . 25

3 Functions 30
Scope . 31
Multiple return values . 32
Named result parameters . 33
Deferred code . 34
Variadic parameters . 36
Functions as values . 36
Callbacks . 37
Panic and recovering . 37
Exercises . 38
Answers . 41

4 Packages 48
Identifiers . 49
Documenting packages . 50
Testing packages . 51
Useful packages . 53
Exercises . 54
Answers . 55

5 Beyond the basics 58
Allocation . 58
Defining your own types . 61
Conversions . 63
Exercises . 65

ii Chapter: Contents

Answers . 67

6 Interfaces 70
Methods . 72
Interface names . 74
A sorting example . 74
Exercises . 78
Answers . 79

7 Concurrency 82
More on channels . 84
Exercises . 85
Answers . 87

8 Communication 90
io.Reader . 91
Some examples . 91
Command line arguments . 92
Executing commands . 92
Networking . 93
Exercises . 94
Answers . 97

A Colophon 104
Contributors . 104
License and copyright . 104

B Index 106

C Bibliography 108

List of Figures

1.1 Chronology of Go . 2

2.1 Array versus slice . 21

3.1 A simple LIFO stack . 39

6.1 Peeling away the layers using reflection . 77

List of Code Examples

2.1 Hello world . 7
2.2 Declaration with = . 8
2.3 Declaration with := . 8
2.4 Familiar types are still distinct . 9
2.5 Arrays and slices . 22
2.6 Simple for loop . 25

List of Code Examples iii

2.7 For loop with an array . 25
2.8 Fizz-Buzz . 26
2.9 Strings . 27
2.10 Runes in strings . 27
2.11 Reverse a string . 28
3.1 A function declaration . 30
3.2 Recursive function . 31
3.3 Local scope . 31
3.4 Global scope . 31
3.5 Scope when calling functions from functions 32
3.6 Without defer . 34
3.7 With defer . 35
3.8 Function literal . 35
3.9 Function literal with parameters . 35
3.10 Access return values within defer . 36
3.11 Anonymous function . 36
3.12 Functions as values in maps . 37
3.13 Average function in Go . 41
3.14 stack.String() . 43
3.15 A function with variable number of arguments 43
3.16 Fibonacci function in Go . 44
3.17 A Map function . 44
3.18 Bubble sort . 46
4.1 A small package . 48
4.2 Use of the even package . 48
4.3 Test file for even package . 52
4.4 Stack in a package . 55
4.5 Push/Pop test . 55
4.6 A (rpn) calculator . 56
5.1 Use of a pointer . 58
5.2 Dereferencing a pointer . 58
5.3 Structures . 61
5.4 A generic map function in Go . 67
5.5 A cat program . 68
6.1 Defining a struct and methods on it . 70
6.2 A function with an empty interface argument 72
6.3 Failing to implement an interface . 72
6.4 Failure extending built-in types . 73
6.5 Failure extending non-local types . 73
6.6 Introspection using reflection . 76
6.7 Reflection and the type and value . 77
6.8 Reflect with private member . 78
6.9 Reflect with public member . 78
6.10 Generic way of calculating a maximum . 79
7.1 Go routines in action . 82
7.2 Go routines and a channel . 83
7.3 Using select . 84
7.4 Channels in Go . 87
7.5 Adding an extra quit channel . 87
7.6 A Fibonacci function in Go . 88

iv Chapter: Contents

8.1 Reading from a file (unbuffered) . 90
8.2 Reading from a file (bufferd) . 90
8.3 Create a directory with the shell . 92
8.4 Create a directory with Go . 92
8.5 Processes in Perl . 94
8.8 uniq(1) in Perl . 95
8.6 Processes in Go . 97
8.7 wc(1) in Go . 98
8.9 uniq(1) in Go . 98
8.10 A simple echo server . 99
8.11 Number cruncher . 100

List of Exercises

1 (1) Documentation . 4
2 (1) For-loop . 23
3 (1) FizzBuzz . 24
4 (1) Strings . 24
5 (4) Average . 24
6 (4) Average . 38
7 (3) Integer ordering . 38
8 (4) Scope . 38
9 (5) Stack . 39
10 (5) Var args . 39
11 (5) Fibonacci . 39
12 (4) Map function . 39
13 (3) Minimum and maximum . 39
14 (5) Bubble sort . 40
15 (6) Functions that return functions . 40
16 (2) Stack as package . 54
17 (7) Calculator . 54
18 (4) Pointer arithmetic . 65
19 (6) Map function with interfaces . 65
20 (6) Pointers . 65
21 (6) Linked List . 66
22 (6) Cat . 66
23 (8) Method calls . 66
24 (6) Interfaces and compilation . 78
25 (5) Pointers and reflection . 78
26 (7) Interfaces and max() . 78
27 (4) Channels . 85
28 (7) Fibonacci II . 85
29 (8) Processes . 94
30 (5) Word and letter count . 95
31 (4) Uniq . 95
32 (9) Quine . 95
33 (8) Echo server . 95
34 (9) Number cruncher . 95
35 (8) *Finger daemon . 96

Preface

“Is Go an object-oriented language? Yes and
no.”

Frequently asked questions
GO AUTHORS

Audience

This is an introduction to the Go language from Google. Its aim is to provide a guide to this
new and innovative language.

The intended audience of this book is people who are familiar with programming and
knowsomeprogramming languages, be it C[7], C++[29], Perl[9], Java[22], Erlang[8], Scala[23]
or Haskell[1]. This is not a book which teaches you how to program, this is a book that just
teaches you how to use Go.

As with learning new things, probably the best way to do this is to discover it for yourself
by creating your own programs. Each chapter therefore includes a number of exercises
(and answers) to acquaint you with the language. An exercise is numbered as Qn, where
n is a number. After the exercise number another number in parentheses displays the
difficulty of this particular assignment. This difficulty ranges from 0 to 9, where 0 is easy
and 9 is difficult. Then a short name is given, for easier reference. For example:

Q1. (1) A map function …

introduces a question numbered Q1 of a level 1 difficulty, concerning a map()-function.
The answers are included after the exercises on a new page. The numbering and setup
of the answers is identical to the exercises, except that an answer starts with An, where
the number n corresponds with the number of the exercise. Some exercises don’t have an
answer, they are marked with an asterisks.

Book layout

Chapter 1: Introduction
A short introduction and history of Go. It tells how to get the source code of Go it-
self. It assumes a Unix-like environment, although Go should be fully usable on
Windows.

Chapter 2: Basics
Tells about the basic types, variables and control structures available in the lan-
guage.

Chapter 3: Functions
In the third chapter we look at functions, the basic building blocks of Go programs.

Chapter 4: Packages
In chapter 4 we see that functions and data can be grouped together in packages.
You will also see how to document and test your packages.

Preface vii

Chapter 5: Beyond the basics
After that we look at creating your own types in chapter 5. It also looks at allocation
in Go.

Chapter 6: Interfaces
Go does not support object orientation in the traditional sense. In Go the central
concept is interfaces.

Chapter 7: Concurrency
With the go keyword functions can be started in separate routines (called gorou-
tines). Communication with those goroutines is done via channels.

Chapter 8: Communication
In the last chapterwe showhow to interfacewith the rest of theworld fromwithin a
Go program. How create files and read andwrote from and to them. We also briefly
look into networking.

I hope you will enjoy this book and the language Go.

Settings used in this book

• Go itself is installed in ˜/go ;

• Go source code we want to compile ourself is placed in ˜/g/src and $GOPATH is set to
GOPATH=˜/g .

Translations

The content of this book is freely available. This has already led to translations:

• Chinese, by Xing Xing: http://www.mikespook.com/learning-go/

• Russian, …

Miek Gieben, 2011, 2012 – miek@miek.nl

http://www.mikespook.com/learning-go/
miek@miek.nl

1 Introduction

“I am interested in this and hope to do
something.”

On adding complex numbers to Go
KEN THOMPSON

What is Go? From the website [18]:

The Go programming language is an open source project tomake programmers
more productive. Go is expressive, concise, clean, and efficient. Its concurrency
mechanisms make it easy to write programs that get the most out of multi core
and networked machines, while its novel type system enables flexible and mod-
ular program construction. Go compiles quickly to machine code yet has the
convenience of garbage collection and the power of run-time reflection. It’s a
fast, statically typed, compiled language that feels like a dynamically typed, in-
terpreted language.

Go 1 is the first stable release of the language Go. This document and all exercises work
with Go 1 – if not, its a bug.

The following convention is used throughout this book:

• Code is displayed in DejaVu Mono;

• Keywords are displayed in DejaVu Mono Bold;

• Comments are displayed in DejaVu Mono Italic;

• Extra remarks in the code ← Are displayed like this;

• Longer remarks get a number – ..1 – with the explanation following;

• Line numbers are printed on the right side;

• Shell examples use a% as prompt;

• User entered text in shell examples is in bold, system responses are in a typewriter
font;

• An emphasized paragraph is indented and has a vertical bar on the left.

Official documentation

There already is a substantial amount of documentation written about Go. The Go Tuto- When searching
on the internet use
the term “golang”
instead of plain “go”.

rial [17], and the Effective Go document [12]. The website http://golang.org/doc/ is a
very good starting point for reading up on Goa. Reading these documents is certainly not
required, but it is recommended.

ahttp://golang.org/doc/ itself is served by go doc.

http://golang.org/doc/
http://golang.org/doc/

2 Chapter 1: Introduction

Go 1 comes with its own documentation in the form of a program called go doc. If you
are interested in the documentation for the for the built-ins (see “Operators and built-in
functions” in the next chapter) you can fire it up, like so:

% go doc builtin

How to create your own package documentation is explained in chapter 4.

Origins

Go has it origins in Inferno [2] (which in turn was based upon Plan 9 [3]). Inferno included
a language called Limbo [4]. Quoting from the Limbo paper:

Limbo is a programming language intended for applications running distributed
systems on small computers. It supports modular programming, strong type
checking at compile- and run-time, inter process communication over typed
channels, automatic garbage collection, and simple abstract data types. It is
designed for safe execution even on small machines without hardware memory
protection.

A feature Go inherited from Limbo is channels (see chapter 7). Again from the Limbo
documentation.

[A channel] is a communication mechanism capable of sending and receiving
objects of the specified type to another agent in the system. Channels may be
used to communicate between local processes; using library procedures, they
may be connected to named destinations. In either case send and receive oper-
ations may be directed to them.

The channels in Go are easier to use than those in Limbo. If we dig even deeper in the his-
tory of Go we also find references to “Newsqueak” [26], which pioneered the use of chan-
nel communication in a C–like language. Channel communication isn’t unique to these
languages, a big non–C–like language which also uses them is Erlang [8].

Figure 1.1. Chronology of Go

Newsqueak Limbo GoErlang
1989 19951986 2009

The whole of idea of using channels to communicate with other processes is called Com-
municating Sequential Processes (CSP) and was conceived by C. A. R. Hoare [25], who in-
cidentally is the same man that invented QuickSort [24].

Go is the first C–like language that is widely available, runs onmany different platforms
and makes concurrency easy (or easier).

Getting Go 3

Getting Go

In this section we tell how to install Go locally on your machine, but you can also compile
Go code online at http://play.golang.org/. To quickly play with code this is by far the
easiest route.

You can also get pre-compiled binaries from [19].

Ubuntu and Debian both have a Go package in their repositories, look for the package
“golang”. But there are still some minor issues being worked out. For now we will stick to
the installation from source.

So we will have to retrieve the code from the mercurial archive and compile Go yourself.
For other Unix-like systems the procedure is the same.

• First install Mercurial (to get the hg command). In Ubuntu/Debian/Fedora you must
install the mercurial package;

• For building Go you need the packages: bison, gcc, libc6-dev, ed, gawk and make;

• Set the environment variable GOROOT to the root of your Go install:
% export GOROOT=˜/go

• Then retrieve the latest release (= Go 1) source code:
% hg clone -r release https://go.googlecode.com/hg/ $GOROOT

• Set your PATH to so that the shell can find the Go binaries:
% export PATH=$GOROOT/bin:$PATH

• Compile Go
% cd $GOROOT/src
% ./all.bash

If all goes well, you should see the following at the end:

--- cd ../test
0 known bugs; 0 unexpected bugs

ALL TESTS PASSED

Installed Go for linux/amd64 in /home/go
Installed commands in /home/go/bin

Getting Go for Windows

The best way is to follow the instructions from [19], which are repeated here for your
convience.

• DownloadGo1 from: http://code.google.com/p/go/downloads/list?q=OpSys-Windows+
Type%3DArchive;

http://play.golang.org/
http://code.google.com/p/go/downloads/list?q=OpSys-Windows+Type%3DArchive
http://code.google.com/p/go/downloads/list?q=OpSys-Windows+Type%3DArchive

4 Chapter 1: Introduction

• Unpack it to your C:\ drive;

• Make sure that the contents are C:\Go. Note: this directory should be created when
you unpacked the zip;

• Add C:\Go\bin to your $PATH:
export PATH=C:\Go\bin

Exercises

Q1. (1) Documentation

1. Go’s documentation can be read with the go doc program, which is included the
Go distribution.

go doc hash gives information about the hash package:

% go doc hash
PACKAGE

package hash

...

...

...

SUBDIRECTORIES

adler32
crc32
crc64
fnv

With which go doc command can you read the documentation of fnv contained in
hash?

Answers 5

Answers

A1. (1) Documentation

1. Thepackage fnv is in a subdirectoryofhash, so youwill only need go doc hash/fnv.

Specific functions inside the “Go manual” can also be accessed. For instance the
function Printf is described in fmt, but to only view the documentation concerning
this function use: go doc fmt Printf .

All the built-in functions are also accesible by using go doc builtin.

2 Basics

”In Go, the code does exactly what it says on the
page.”

Go Nuts mailing list
ANDREW GERRAND

There are a few things that make Go different from other languages.

Clean and Simple
Go strives to keep things small and beautiful, you should be able to do a lot in only
a few lines of code;

Concurrent
Go makes it easy to ”fire off” functions to be run as very lightweight threads. These
threads are called goroutines a in Go;

Channels
Communication with these goroutines is done via channels [33, 25];

Fast
Compilation is fast and execution is fast. The aim is to be as fast as C. Compilation
time is measured in seconds;

Safe
Explicit casting and strict ruleswhen converting one type to another. Gohas garbage
collection, no more free() in Go, the language takes care of this;

Standard format
A Go program can be formatted in (almost) any way the programmers want, but an
official format exist. The rule is very simple: The output of the filter gofmt is the
official endorsed format.

Postfix types
Types are given after the variable name, thus var a int, instead of int a; as one
would in C;

UTF-8
UTF-8 is everywhere, in strings and in the program code. Finally you can use Φ =
Φ + 1 in your source code;

Open Source
The Go license is completely open source, see the file LICENSE in the Go source code
distribution;

Fun
Programming with Go should be fun!

aYes, that sounds a lot like coroutines, but goroutines are slightly different as we will see in chapter 7.

Hello World 7

Erlang [8] also shares some of the features of Go. Notable differences between Erlang and
Go is that Erlang borders on being a functional language, where Go is an imperative one.
And Erlang runs in a virtual machine, while Go is compiled. Go also has a much more
Unix-like feeling to it.

Hello World

In the Go tutorial, Go is presented to the world in the typical manner: letting it print ”Hello
World” (KenThompsonandDennis Ritchie started thiswhen theypresented theC language
in the nineteen seventies). We don’t think we can do better, so here it is, ”Hello World” in
Go.

Listing 2.1. Hello world

1package main ..0

3import "fmt" // Implements formatted I/O. ..1

5/* Print something */ ..2

6func main() { ..3

7
..4

8fmt.Printf("Hello, world; or καληµέρα κóσµε; or こんにちは世界\n")
9}

Lets look at the program line by line.

..0 This first line is just required. All Go files start with package <something>, package
main is required for a standalone executable;

..1 This sayswe need ”fmt” in addition tomain. A package other thanmain is commonly
called a library, a familiar concept of many programming languages (see chapter 4).
The line ends with a comment which is started with //;

..2 This is also a comment, but this one is enclosed in /* and */;

..3 Just as package mainwas required to be first, importmay come next. In Go, package
is always first, then import, then everything else. When your Go program is exe-
cuted, the first function called will be main.main(), whichmimics the behavior from
C. Here we declare that function;

..4 On line 8 we call a function from the package fmt to print a string to the screen. The
string is enclosed with " and may contain non-ASCII characters. Here we use Greek
and Japanese.

Compiling and running code

The preferred way to build a Go program, is to use the go tool. To build helloworldwe just
give:

8 Chapter 2: Basics

% go build helloworld.go

This results in a executable called helloworld.

% ./helloworld

Hello, world; or καληµέρα κóσµε; or こんにちは世界

Settings used in this book

• Go itself is installed in ˜/go ;

• Go source code we want to compile ourself is placed in ˜/g/src and $GOPATH is set to
GOPATH=˜/g . This variable comes into play when we start using packages (chapter
4).

Variables, types and keywords

In the next sections we will look at variables, basic types, keywords and control structures
of our new language. Go has a C-like feel when it comes to its syntax. If youwant to put two
(or more) statements on one line, they must be separated with a semicolon (’;’). Normally
you don’t need the semicolon.

Go is different from other languages in that the type of a variable is specified after the
variable name. So not: int a, but a int. When declaring a variable it is assigned the
”natural” null value for the type. This means that after var a int, a has a value of 0. With
var s string, s is assigned the zero string, which is "".

Declaring and assigning in Go is a two step process, but they may be combined. Compare
the following pieces of code which have the same effect.

Listing 2.2. Declaration with =

var a int
var b bool
a = 15
b = false

Listing 2.3. Declaration with :=

a := 15
b := false

On the left we use the var keyword to declare a variable and then assign a value to it. The
code on the right uses := to do this in one step (this formmayonly be used inside functions).
In that case the variable type is deduced from the value. A value of 15 indicates an int, a
value of false tells Go that the type should be bool. Multiple var declarations may also be
grouped, const and import also allow this. Note the use of parentheses:

var (
x int
b bool

)

Variables, types and keywords 9

Multiple variables of the same type can also be declared on a single line: var x, y int,
makes x and y both int variables. You can also make use of parallel assignment:

a, b := 20, 16

Which makes a and b both integer variables and assigns 20 to a and 16 to b.

A special name for a variable is _ (underscore). Any value assigned to it is discarded. In
this example we only assign the integer value of 35 to b and discard the value 34.

_, b := 34, 35

Declared, but otherwise unused variables are a compiler error in Go. The following code
generates this error: i declared and not used

package main
func main() {

var i int
}

Boolean types

A boolean type represents the set of boolean truth values denoted by the predeclared con-
stants true and false. The boolean type is bool.

Numerical types

Go has the well known types such as int, this type has the appropriate length for your
machine. Meaning that on a 32 bits machine they are 32 bits, and on a 64 bits machine
they are 64 bits. Note: an int is either 32 or 64 bits, no other values are defined. Same
goes for uint.

If you want to be explicit about the length you can have that too with int32, or uint32.
The full list for (signed and unsigned) integers is int8, int16, int32, int64 and byte, uint8,
uint16, uint32, uint64. With byte being an alias for uint8. For floating point values there
is float32 and float64 (there is no float type). A 64 bit integer or floating point value is
always 64 bit, also on 32 bit architectures.

Note however that these types are all distinct and assigning variables which mix these
types is a compiler error, like in the following code:

Listing 2.4. Familiar types are still distinct

1package main

3func main() {
4var a int ← Generic integer type

5var b int32 ← 32 bits integer type

6a = 15
7b = a + a ← Illegal mixing of these types

8b = b + 5 ← 5 is a (typeless) constant, so this is OK

9}

10 Chapter 2: Basics

Gives the error on the assignment on line 7:

types.go:7: cannot use a + a (type int) as type int32 in assignment

The assigned values may be denoted using octal, hexadecimal or the scientific notation:
077, 0xFF, 1e3 or 6.022e23 are all valid.

Constants

Constants in Go are just that — constant. They are created at compile time, and can only
be numbers, strings or booleans; const x = 42 makes x a constant. You can use iota b to
enumerate values.

const (
a = iota
b = iota

)

The first use of iota will yield 0, so a is equal to 0, whenever iota is used again on a new
line its value is incremented with 1, so b has a value of 1.

You can even do the following, let Go repeat the use of = iota:

const (
a = iota
b ← Implicitly b = iota

)

You may also explicitly type a constant, if you need that:

const (
a = 0 ← Is an int now

b string = "0"
)

Strings

An important other built in type is string. Assigning a string is as simple as:

s := "Hello World!"

Strings in Go are a sequence of UTF-8 characters enclosed in double quotes (”). If you use
the single quote (’) you mean one character (encoded in UTF-8) — which is not a string in
Go.

Once assigned to a variable the string can not be changed anymore: strings in Go are im-
mutable. For people coming from C, the following is not legal in Go:

var s string = "hello"
s[0] = 'c' ← Change first char. to 'c', this is an error

To do this in Go you will need the following:

bThe word [iota] is used in a common English phrase, ’not one iota’, meaning ’not the slightest difference’,
in reference to a phrase in the New Testament: “until heaven and earth pass away, not an iota, not a dot, will pass
from the Law.” [35]

Variables, types and keywords 11

s := "hello"

c := []byte(s) ..0

c[0] = 'c' ..1

s2 := string(c) ..2

fmt.Printf("%s\n", s2) ..3

..0 Convert s to an array of bytes, see chapter 5 section ”Conversions” on page 63;

..1 Change the first element of this array;

..2 Create a new string s2 with the alteration;

..3 print the string with fmt.Printf.

Multi-line strings

Due to the insertion of semicolons (see [12] section “Semicolons”), you need to be
careful with using multi line strings. If you write:

s := "Starting part"
+ "Ending part"

This is transformed into:

s := "Starting part";
+ "Ending part";

Which is not valid syntax, you need to write:

s := "Starting part" +
"Ending part"

Then Go will not insert the semicolons in the wrong places. Another way would be to
use raw string literals by using back quotes: `:

s := `Starting part
Ending part`

Be aware that in this last example s now also contains the newline. Unlike interpreted
string literals a raw string literal’s value is composed of the uninterpreted characters
between the quotes.

Runes

Rune is an alias for int32. It is an UTF-8 encoded code point. When is this type useful? For
instance when iterating over characters in a string. You can loop over each byte (which is
only equivalent to a character when strings would be encoded in US ASCII, which they are
not in Go!). So to get the actual charaters you should use the rune type.

Complex numbers

Go has native support for complex numbers. If you use them you need a variable of the
type complex128 (64 bit imaginary part). If you want something smaller there is complex64

12 Chapter 2: Basics

– for a 32 bits imaginary part. Complex numbers are written as re + imi, where re is
the real part, im is the imaginary part and i is the literal ’i’ (

√
−1). An example of using

complex numbers:

var c complex64 = 5+5i;fmt.Printf("Value is: %v", c)
will print: (5+5i)

Errors

Any non-trivial programwill have the need for error reporting sooner or later. Because of
this Go has a builtin type specially for errors, called error, var a error makes a an error,
a’s value is nil.

Operators and built-in functions

Go supports the normal set of numerical operations, table 2.1 lists the current ones and
their relative precedence. They all associate from left to right.

Table 2.1. Operator precedence

Precedence Operator(s)

Highest * / % << >> & &^
+ - | ^
== != < <= > >=
<-
&&

Lowest ||

+ - * / and % all do what you would expect, & | ^ and &^ are bit operators for bitwise and,
bitwise or, bitwise xor and bit clear respectively. The && and || operators are logical and
and logical or. Not listed in the table is the logical not: !

Although Go does not support operator overloading (or method overloading for that mat-
ter), some of the built-in operators are overloaded. For instance + can be used for integers,
floats, complex numbers and strings (adding strings is concatenating them).

Go keywords

Table 2.2. Keywords in Go

break default func interface select
case defer go map struct
chan else goto package switch
const fallthrough if range type
continue for import return var

Control structures 13

Table 2.2 lists all the keywords in Go. In the following paragraphs and chapters we will
cover them. Some of these we have seen already.

• For var and const see section “Variables, types and keywords” on page 8;

• package and import are briefly touched upon in section “Hello World”. In chapter 4
they are documented in more detail.

Others deserve more text and have their own chapter/section:

• func is used to declare functions and methods;

• return is used to return from functions, for both func and return see chapter 3 for
the details;

• go is used for concurrency (chapter 7);

• select used to choose from different types of communication, see chapter 7;

• interface see chapter 6;

• struct is used for abstract data types, see chapter 5;

• type also see chapter 5.

Control structures

There are only a few control structures in Go c. For instance there is no do or while loop,
only a for. There is a (flexible) switch statement and if and switch accept an optional ini-
tialization statement like that of for. There also is something called a type switch and
a multiway communications multiplexer, select (see chapter 7). The syntax is differ-
ent (from that in C): parentheses are not required and the body must always be brace-
delimited.

If-else

In Go an if looks like this:

if x > 0 { ← { is mandatory

return y
} else {

return x
}

Mandatory braces encourage writing simple if statements on multiple lines. It is good
style to do so anyway, especially when the body contains a control statement such as a
return or break.

Since if and switch accept an initialization statement, it’s common to see one used to set
up a (local) variable.

cThis section is copied from [12].

14 Chapter 2: Basics

if err := file.Chmod(0664); err != nil { ← nil is like C's NULL

log.Stderr(err) ← Scope of err is limited to if's body

return err
}

You can use the logical operators (see table 2.1) as you would normally do:

if true && true {
println("true")

}
if ! false {

println("true")
}

In the Go libraries, you will find that when an if statement doesn’t flow into the next
statement – that is, the body ends in break, continue, goto, or return – the unnecessary
else is omitted.

f, err := os.Open(name, os.O_RDONLY, 0)
if err != nil {

return err
}
doSomething(f)

This is an example of a common situation where code must analyze a sequence of error
possibilities. The code reads well if the successful flow of control runs down the page,
eliminating error cases as they arise. Since error cases tend to end in return statements,
the resulting code needs no else statements.

f, err := os.Open(name, os.O_RDONLY, 0)
if err != nil {

return err
}
d, err := f.Stat()
if err != nil {

return err
}
doSomething(f, d)

Syntax wise the following is illegal in Go:

if err != nil
{ ← Must be on the same line as the if

return err
}

See [12] section “Semicolons” for the deeper reasons behind this.

Ending with if-then-else

Note that if you end a function like this:

if err != nil {
return err

Control structures 15

} else {
return nil

}

It will not compile. This is a bug in the Go compiler. See [21] for an extended problem
description and hopefully a fix.

Goto

Go has a goto statement — use it wisely. With goto you jump to a label which must be
defined within the current function. For instance a loop in disguise:

func myfunc() {
i := 0

Here: ← First word on a line ending with a colon is a label

println(i)
i++
goto Here ← Jump

}

The name of the label is case sensitive.

For

The Go for loop has three forms, only one of which has semicolons.

for init; condition; post { } ← Like a C for

for condition { } ← Like a while

for { } ← Like a C for(;;) (endless loop)

Short declarations make it easy to declare the index variable right in the loop.

sum := 0
for i := 0; i < 10; i++ {

sum += i ← Short for sum = sum + i

} ← i ceases to exist after the loop

Finally, since Go has no comma operator and ++ and - - are statements not expressions, if
you want to run multiple variables in a for you should use parallel assignment.

// Reverse a
for i, j := 0, len(a)-1; i < j; i, j = i+1, j-1 { ← Parallel assignment

a[i], a[j] = a[j], a[i] ← Here too

}

Break and continue

With break you can quit loops early. By itself, break breaks the current loop.

16 Chapter 2: Basics

for i := 0; i < 10; i++ {
if i > 5 {

break ← Stop this loop, making it only print 0 to 5

}
println(i)

}

With loopswithin loops you can specify a label after break. Making the label identifywhich
loop to stop:

J: for j := 0; j < 5; j++ {
for i := 0; i < 10; i++ {

if i > 5 {
break J ← Now it breaks the j-loop, not the i one

}
println(i)

}
}

With continue you begin the next iteration of the loop, skipping any remaining code. In
the same way as break, continue also accepts a label. The following loop prints 0 to 5.

for i := 0; i < 10; i++ {
if i > 5 {

continue ← Skip the rest of the remaining code in the loop

}
println(i)

}

Range

The keyword range can be used for loops. It can loop over slices, arrays, strings, maps and
channels (see chapter 7). range is an iterator that, when called, returns a key-value pair
from the thing it loops over. Depending on what that is, range returns different things.

When looping over a slice or array range returns the index in the slice as the key and value
belonging to that index. Consider this code:

list := []string{"a", "b", "c", "d", "e", "f"} ..0

for k, v := range list { ..1

// do what you want with k and v ..2

}

..0 Create a slice (see ”Arrays, slices and maps” on page 19)) of strings.

..1 Use range to loop over them.With each iteration range will return the index as int
and the key as a string, starting with 0 and ”a”.

..2 k will have the value 0…5, and v will loop through ”a”…”f”.

Control structures 17

You can also use range on strings directly. Then it will break out the individual Unicode
characters d and their start position, by parsing the UTF-8. The loop:

for pos, char := range "aΦx" {
fmt.Printf("character '%c' starts at byte position %d\n", char, pos)

}

prints

character 'a' starts at byte position 0
character 'Φ' starts at byte position 1
character 'x' starts at byte position 3 ← Φ took 2 bytes

Switch

Go’s switch is very flexible. The expressions need not be constants or even integers, the
cases are evaluated top to bottom until a match is found, and if the switch has no expres-
sion it switches on true. It’s therefore possible – and idiomatic – to write an if-else-if-
else chain as a switch.

func unhex(c byte) byte {
switch {
case '0' <= c && c <= '9':

return c - '0'
case 'a' <= c && c <= 'f':

return c - 'a' + 10
case 'A' <= c && c <= 'F':

return c - 'A' + 10
}
return 0

}

There is no automatic fall through, you can however use fallthrough to do just that. With-
out fallthrough:

switch i {
case 0: // empty case body
case 1:

f() // f is not called when i == 0!
}

And with:

switch i {
case 0: fallthrough
case 1:

f() // f is called when i == 0!
}

dIn the UTF-8 world characters are sometimes called runes. Mostly, when people talk about characters, they
mean 8 bit characters. As UTF-8 characters may be up to 32 bits the word rune is used. In this case the type of
char is rune.

18 Chapter 2: Basics

With default you can specify an action when none of the other cases match.

switch i {
case 0:
case 1:

f()
default:

g() // called when i is not 0 or 1
}

Cases can be presented in comma-separated lists.

func shouldEscape(c byte) bool {
switch c {
case ' ', '?', '&', '=', '#', '+': ← , as "or"

return true
}
return false

}

Here’s a comparison routine for byte arrays that uses two switch statements:

// Compare returns an integer comparing the two byte arrays
// lexicographically.
// The result will be 0 if a == b, -1 if a < b, and +1 if a > b
func Compare(a, b []byte) int {

for i := 0; i < len(a) && i < len(b); i++ {
switch {
case a[i] > b[i]:

return 1
case a[i] < b[i]:

return -1
}

}
// Strings are equal except for possible tail
switch {
case len(a) < len(b):

return -1
case len(a) > len(b):

return 1
}
return 0 // Strings are equal

}

Built-in functions

A small number of functions are predefined, meaning you don’t have to include any pack-
age to get access to them. Table 2.3 lists them all.e

eYou can use the command go doc builtin to read the online documentation about the built-in types and
functions.

Arrays, slices and maps 19

Table 2.3. Pre–defined functions in Go

close new panic complex
delete make recover real
len append print imag
cap copy println

These built-in functions are documented in the builtin pseudo package that is included in
recent Go releases.

close is used in channel communication. It closes a channels, see chapter 7 for more on
this.

delete is used for deleting entries in maps.

len and cap are used on a number of different types, len is used for returning the length
of strings and the length of slices and arrays. See section “Arrays, slices and maps” for the
details of slices and arrays and the function cap.

new is used for allocating memory for user defined data types. See section “Allocation
with new” on page 59.

make is used for allocating memory for built-in types (maps, slices and channels). See
section “Allocation with make” on page 59.

copy is used for copying slices. See section “Slices” in this chapter.

append is for concatenating slices. See section “Slices” in this chapter.

panic and recover are used for an exception mechanism. See the section “Panic and re-
covering” on page 37 for more.

print and println are low level printing functions that can be used without reverting to
the fmt package. These are mainly used for debugging.

complex, real and imag all deal with complex numbers. Other than the simple example
we gave, we will not further explain complex numbers.

Arrays, slices and maps

Storing multiple values in a list can be done by utilizing arrays, or their more flexible
cousin: slices. A dictionary or hash type is also available, it is called a map in Go.

20 Chapter 2: Basics

Arrays

An array is defined by: [n]<type>, where n is the length of the array and <type> is the
stuff you want to store. Assigning or indexing an element in the array is done with square
brackets:

var arr [10]int
arr[0] = 42
arr[1] = 13
fmt.Printf("The first element is %d\n", arr[0])

Array types like var arr = [10]int have a fixed size. The size is part of the type. They can’t
grow, because then theywould have a different type. Also arrays are values: Assigning one
array to another copies all the elements. In particular, if you pass an array to a function,
it will receive a copy of the array, not a pointer to it.

To declare an array you can use the following: var a [3]int, to initialize it to something
else than zero, use a composite literal: a := [3]int{1, 2, 3} and this can be shortened to
a := [...]int{1, 2, 3}, where Go counts the elements automatically. Note that all fieldsA composite literal

allows you to assign
a value directly to an
array, slice or map.
See the section
“Constructors and
composite literals”
on page 60 for more.

must be specified. So if you are using multidimensional arrays you have to do quite some
typing:

a := [2][2]int{ [2]int{1,2}, [2]int{3,4} }

Which is the same as:

a := [2][2]int{ [...]int{1,2}, [...]int{3,4} }

When declaring arrays you always have to type something in between the square brack-
ets, either a number or three dots (...) when using a composite literal. Since releaseGo release 2010-10-

27 [16]. 2010-10-27 this syntax was further simplified. From the release notes:

The syntax for arrays, slices, and maps of composite literals has been simpli-
fied. Within a composite literal of array, slice, or map type, elements that are
themselves composite literals may elide the type if it is identical to the outer
literal’s element type.

This means our example can become:

a := [2][2]int{ {1,2}, {3,4} }

Slices
TODO
Add push/pop to
this section as con-
tainer/vector will be
deprecated.

A slice is similar to an array, but it can growwhen new elements are added. A slice always
refers to an underlying array. What makes slices different from arrays is that a slice is a
pointer to an array; slices are reference types, which means that if you assign one slice

Reference types are
created with make.

to another, both refer to the same underlying array. For instance, if a function takes a
slice argument, changes it makes to the elements of the slice will be visible to the caller,
analogous to passing a pointer to the underlying array. With:

sl := make([]int, 10)

Arrays, slices and maps 21

you create a slice which can hold ten elements. Note that the underlying array isn’t spec-
ified. A slice is always coupled to an array that has a fixed size. For slices we define a
capacity and a length. Figure 2.1 depicts the following Go code. First we create an array
ofm elements of the type int: var array[m]int
Next, we create a slice from this array: slice := array[0:n]
And now we have:

• len(slice)== n ;

• cap(slice)== m ;

• len(array)== cap(array)== m .

Figure 2.1. Array versus slice

. . .

len == cap == m

array

slice

0

0

n-1

n-1

m-1

len == n

. . . m-1

cap == m

Given an array, or another slice, a new slice is created via a[I:J]. This creates a new slice
which refers to the variable a, starts at index I, and ends before index J. It has length J - I.

// array[n:m], create a slice from array with elements n to m-1

a := [...]int{1, 2, 3, 4, 5} ..0

s1 := a[2:4] ..1

s2 := a[1:5] ..2

s3 := a[:] ..3

s4 := a[:4] ..4

s5 := s2[:] ..5

..0 Define an array with 5 elements, from index 0 to 4;

..1 Create a slice with the elements from index 2 to 3, this contains: 3, 4;

..2 Create a slice with the elements from index 1 to 4, contains: 2, 3, 4, 5;

..3 Create a slicewith all the elements of the array in it. This is a shorthand for: a[0:len(a)];

..4 Create a slice with the elements from index 0 to 3, this is thus short for: a[0:4], and
yields: 1, 2, 3, 4;

..5 Create a slice from the slice s2, note that s5 still refers to the array a.

22 Chapter 2: Basics

In the code listed in 2.5 we dare to do the impossible on line 8 and try to allocate something
beyond the capacity (maximum length of the underlying array) and we are greeted with a
runtime error.

Listing 2.5. Arrays and slices

1package main

3func main() {
4var array [100]int // Create array, index from 0 to 99
5slice := array[0:99] // Create slice, index from 0 to 98

7slice[98] = 'a' // OK
8slice[99] = 'a' // Error: "throw: index out of range"
9}

If you want to extend a slice, there are a couple of built-in functions that make life easier:
append and copy. From [14]:

The function append appends zero or more values x to a slice s and returns the
resulting slice, with the same type as s. If the capacity of s is not large enough to
fit the additional values, append allocates a new, sufficiently large slice that fits
both the existing slice elements and the additional values. Thus, the returned
slice may refer to a different underlying array.

s0 := []int{0, 0}

s1 := append(s0, 2) ..0

s2 := append(s1, 3, 5, 7) ..1

s3 := append(s2, s0...) ..2

..0 append a single element, s1 == []int{0, 0, 2};

..1 append multiple elements, s2 == []int{0, 0, 2, 3, 5, 7};

..2 append a slice, s3 == []int{0, 0, 2, 3, 5, 7, 0, 0}. Note the three dots!

And

The function copy copies slice elements from a source src to a destination dst
and returns the number of elements copied. Source and destination may over-
lap. The number of arguments copied is theminimumof len(src)and len(dst).

var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7}
var s = make([]int, 6)
n1 := copy(s, a[0:]) ← n1 == 6, s == []int{0, 1, 2, 3, 4, 5}

n2 := copy(s, s[2:]) ← n2 == 4, s == []int{2, 3, 4, 5, 4, 5}

Exercises 23

Maps

Many other languages have a similar type built-in, Perl has hashes, Python has its dictio-
naries and C++ also has maps (as part of the libraries) for instance. In Go we have the map
type. A map can be thought of as an array indexed by strings (in its most simple form). In
the following listing we define a map which converts from a string (month abbreviation)
to an int – the number of days in that month. The generic way to define a map is with:
map[<from type>]<to type>

monthdays := map[string]int{
"Jan": 31, "Feb": 28, "Mar": 31,
"Apr": 30, "May": 31, "Jun": 30,
"Jul": 31, "Aug": 31, "Sep": 30,
"Oct": 31, "Nov": 30, "Dec": 31, ← The comma here is required

}

Note to use make when only declaring a map: monthdays := make(map[string]int)

For indexing (searching) in the map, we use square brackets. For example, suppose we
want to print the number of days in December: fmt.Printf("%d\n", monthdays["Dec"])
If you are looping over an array, slice, string, or map a range clause will help you again,
which returns the key and corresponding value with each invocation.

year := 0
for _, days := range monthdays { ← Key is not used, hence _, days

year += days
}
fmt.Printf("Numbers of days in a year: %d\n", year)

Adding elements to the map would be done as:

monthdays["Undecim"] = 30 ← Add a month

monthdays["Feb"] = 29 ← Overwrite entry - for leap years

To test for existence , you would use the following[27]:

var value int
var present bool

value, present = monthdays["Jan"] ← If exist, present has the value true

← Or better and more Go like

v, ok := monthdays["Jan"] ← Hence, the "comma ok" form

And finally you can remove elements from the map:

delete(monthdays, "Mar") ← Deletes "Mar", always rainy anyway

In general the syntax delete(m, x) will delete the map entry retrieved by the expression
m[x].

Exercises

Q2. (1) For-loop

24 Chapter 2: Basics

1. Create a simple loop with the for construct. Make it loop 10 times and print out
the loop counter with the fmt package.

2. Rewrite the loop from 1. to use goto. The keyword formay not be used.

3. Rewrite the loop again so that it fills an array and then prints that array to the
screen.

Q3. (1) FizzBuzz

1. Solve this problem, called the Fizz-Buzz [31] problem:

Write a program that prints the numbers from 1 to 100. But formultiples
of three print “Fizz” instead of the number and for the multiples of five
print “Buzz”. For numbers which are multiples of both three and five
print “FizzBuzz”.

Q4. (1) Strings

1. Create a Go program that prints the following (up to 100 characters):

A
AA
AAA
AAAA
AAAAA
AAAAAA
AAAAAAA
...

2. Create a program that counts the numbers of characters in this string:
asSASA ddd dsjkdsjs dk

Make it also output the number of bytes in that string. Hint. Check out the utf8
package.

3. Extend the program from the previous question to replace the three runes at posi-
tion 4 with ’abc’.

4. Write a Go program that reverses a string, so “foobar” is printed as “raboof”. Hint.
Unfortunately you need to know about conversion, skip ahead to section “Conver-
sions” on page 63.

Q5. (4) Average

1. Give the code that calculates the average of a float64 slice. In a later exercise (Q6
you will make it into a function.

Answers 25

Answers

A2. (1) For-loop

1. There are a multitude of possibilities, one of the solutions could be:

Listing 2.6. Simple for loop

package main

import "fmt"

func main() {
for i := 0; i < 10; i++ { ← See section For on page 15

fmt.Printf("%d\n", i)
}

}

Let’s compile this and look at the output.

% 6g for.go && 6l -o for for.6
% ./for
0
1
.
.
.
9

2. Rewriting the loop results in code that should look something like this (only show-
ing the main-function):

func main() {
i := 0 ← Define our loop variable

I: ← Define a label

fmt.Printf("%d\n", i)
i++
if i < 10 {

goto I ← Jump back to the label

}
}

3. The following is one possible solution:

Listing 2.7. For loop with an array

func main() {
var arr [10]int ← Create an array with 10 elements

for i := 0; i < 10; i++ {
arr[i] = i ← Fill it one by one

}

26 Chapter 2: Basics

fmt.Printf("%v", arr) ← With %v Go prints the type

}

You could even do this in one fell swoop by using a composite literal:

a := [...]int{0,1,2,3,4,5,6,7,8,9} ← With [...] you let Go count

fmt.Printf("%v\n", a)

A3. (1) FizzBuzz

1. A possible solution to this simple problem is the following program.

Listing 2.8. Fizz-Buzz

package main

import "fmt"

func main() {
const (

FIZZ = 3 ..0

BUZZ = 5
)

var p bool ..1

for i := 1; i < 100; i++ { ..2 ;
p = false

if i%FIZZ == 0 { ..3

fmt.Printf("Fizz")
p = true

}

if i%BUZZ == 0 { ..4

fmt.Printf("Buzz")
p = true

}

if !p { ..5

fmt.Printf("%v", i)
}

fmt.Println() ..6

}
}

..0 Define two constants to make the code more readable. See section ”Con-
stants”;

..1 Holds if we already printed someting;

..2 for-loop, see section ”For”

..3 If divisible by FIZZ, print ”Fizz”;

..4 And if divisble by BUZZ, print ”Buzz”. Note that we have also taken care of
the FizzBuzz case;

Answers 27

..5 If neither FIZZ nor BUZZ printed, print the value;

..6 Format each output on a new line.

A4. (1) Strings

1. This program is a solution:

Listing 2.9. Strings

package main

import "fmt"

func main() {
str := "A"
for i := 0; i < 100; i++ {

fmt.Printf("%s\n", str)
str = str + "A" ← String concatenation

}
}

2. To answer this question we need some help of the unicode/utf8 package. First we
check the documentation with go doc unicode/utf8 | less. When we read the
documentation we notice func RuneCount(p []byte)int. Secondly we can convert
string to a byte slice with

str := "hello"
b := []byte(str) ← Conversion, see page 63

Putting this together leads to the following program.

Listing 2.10. Runes in strings

package main

import (
"fmt"
"unicode/utf8"

)

func main() {
str := "dsjkdshdjsdh....js"
fmt.Printf("String %s\nLength: %d, Runes: %d\n", str,

len([]byte(str)), utf8.RuneCount([]byte(str)))
}

3. Reversing a string can be done as follows. We startfrom the left (i) and the right
(j) and swap the characters as we see them:

28 Chapter 2: Basics

Listing 2.11. Reverse a string

import "fmt"

func main() {
s := "foobar"
a := []byte(s) ← Again a conversion

// Reverse a
for i, j := 0, len(a)-1; i < j; i, j = i+1, j-1 {

a[i], a[j] = a[j], a[i] ← Parallel assignment

}
fmt.Printf("%s\n", string(a)) ← Convert it back

}

A5. (4) Average

1. The following code calculates the average.

sum := 0.0
switch len(xs) {

case 0: ..0

avg = 0

default: ..1

for _, v := range xs {
sum += v

}

avg = sum / float64(len(xs)) ..2

}

..0 If the length is zero, we return 0;

..1 Otherwise we calculate the average;

..2 We have to convert the value to a float64 to make the division work.

3 Functions

“I’m always delighted by the light touch and
stillness of early programming languages. Not
much text; a lot gets done. Old programs read
like quiet conversations between a well-spoken
research worker and a well- studied
mechanical colleague, not as a debate with a
compiler. Who’d have guessed sophistication
bought such noise?”

RICHARD P. GABRIEL

Functions are the basic building blocks in Go programs; all interesting stuff happens in
them. A function is declared as follows:

Listing 3.1. A function declaration

..

..
0

.

..
1

.

..
2

.

..
3

.

..
4

.

..
5

type mytype int ← New type, see chapter 5

func (p mytype) funcname(q int) (r,s int) { return 0,0 }

..0 The keyword func is used to declare a function;

..1 A function can be defined to work on a specific type, amore common name for such
a function is method. This part is called a receiver and it is optional. This will be
used in chapter 6;

..2 funcname is the name of your function;

..3 The variable q of type int is the input parameter. The parameters are passed pass-
by-valuemeaning they are copied;

..4 The variables r and s are the named return parameters for this function. Functions
in Go can have multiple return values, see section ”Multiple return values” on page
32. If you want the return parameters not to be named you only give the types: (
int,int). If you have only one value to return you may omit the parentheses. If
your function is a subroutine and does not have anything to return you may omit
this entirely;

..5 This is the function’s body, note that return is a statement so the braces around the
parameter(s) are optional.

Here are a two examples, the left is a function without a return value, the one on the right
is a simple function that returns its input.

Scope 31

func subroutine(in int) {
return

}

func identity(in int) int {
return in

}

Functions can be declared in any order you wish, the compiler scans the entire file be-
fore execution. So function prototyping is a thing of the past in Go. Go disallows nested
functions. You can however work around this by using anonymous functions, see section
“Functions as values” on page 36 in this chapter.

Recursive functions just work as in other languages:

Listing 3.2. Recursive function

func rec(i int) {
if i == 10 {

return
}
rec(i+1)
fmt.Printf("%d ", i)

}

This prints: 9 8 7 6 5 4 3 2 1 0.

Scope

Variables declared outside any functions are global in Go, those defined in functions are
local to those functions. If names overlap — a local variable is declared with the same
name as a global one — the local variable hides the global one when the current function
is executed.

Listing 3.3. Local scope

.
package main

var a = 6

func main() {
p()
q()
p()

}

func p() {
println(a)

}

func q() {
a := 5 ← Definition

println(a)
}

Listing 3.4. Global scope

.
package main

var a = 6

func main() {
p()
q()
p()

}

func p() {
println(a)

}

func q() {
a = 5 ← Assignment

println(a)
}

32 Chapter 3: Functions

In listing 3.3 we introduce a local variable a in the function q(). This local a is only visible
in q(). That is why the code will print: 656. In listing 3.4 no new variables are introduced,
there is only a global a. Assigning a new value to a will be globally visible. This code will
print: 655

In the following example we call g() from f():

Listing 3.5. Scope when calling functions from functions

package main

var a int

func main() {
a = 5
println(a)
f()

}

func f() {
a := 6
println(a)
g()

}

func g() {
println(a)

}

The printout will be: 565. A local variable is only valid whenwe are executing the function
in which it is defined.

Multiple return values

One of Go’s unusual (for compiled languages) features is that functions and methods can
return multiple values (Python and Perl can do this too). This can be used to improve on
a couple of clumsy idioms in C programs: in-band error returns (such as -1 for EOF) and
modifying an argument. In Go, Write returns a count and an error: “Yes, you wrote some
bytes but not all of them because you filled the device”. The signature of *File.Write in
package os is:

func (file *File) Write(b []byte) (n int, err error)

and as the documentation says, it returns the number of bytes written and a non-nil error
when n != len(b). This is a common style in Go.

A similar approach obviates the need to pass a pointer to a return value to simulate a
reference parameter. Here’s a simple-minded function to grab a number from a position
in a byte array, returning the number and the next position.

func nextInt(b []byte, i int) (int, int) {
x := 0
// Naively assume everything is a number

Named result parameters 33

for ; i < len(b); i++ {
x = x*10 + int(b[i])-'0'

}
return x, i

}

You could use it to scan the numbers in an input array a like this:

a := []byte{'1', '2', '3', '4'}
var x int
for i := 0; i < len(a); { ← No i++

x, i = nextInt(a, i)
println(x)

}

Without having tuples as a native type, multiple return values is the next best thing to
have. You can return precisely what youwant without overloading the domain space with
special values to signal errors.

Named result parameters

The return or result parameters of a Go function can be given names and used as regular
variables, just like the incoming parameters. When named, they are initialized to the zero
values for their typeswhen the function begins; if the function executes a return statement
with no arguments, the current values of the result parameters are used as the returned
values. Using this features enables you (again) to do more with less code a.

The names are not mandatory but they can make code shorter and clearer: they are doc-
umentation. If we name the results of nextInt it becomes obvious which returned int is
which.

func nextInt(b []byte, pos int) (value, nextPos int) { /* ... */ }

Because named results are initialized and tied to an unadorned return, they can simplify
as well as clarify. Here’s a version of io.ReadFull that uses them well:

func ReadFull(r Reader, buf []byte) (n int, err error) {
for len(buf) > 0 && err == nil {

var nr int
nr, err = r.Read(buf)
n += nr
buf = buf[nr:len(buf)]

}
return

}

In the following example we declare a simple function which calculates the factorial value Some text in this sec-
tion comes from [5].of a value x.

aThis is a motto of Go; “Domore with less code”

34 Chapter 3: Functions

func Factorial(x int) int { ← func Factorial(x int) (int) is also OK

if x == 0 {
return 1

} else {
return x * Factorial(x - 1)

}
}

So you could also write factorial as:

func Factorial(x int) (result int) {
if x == 0 {
result = 1

} else {
result = x * Factorial(x - 1)

}
return

}

When we use named result values, the code is shorter and easier to read. You can also
write a function with multiple return values:

func fib(n) (val, pos int) { ← Both ints

if n == 0 {
val = 1
pos = 0

} else if n == 1 {
val = 1
pos = 1

} else {
v1, _ := fib(n-1)
v2, _ := fib(n-2)
val = v1 + v2
pos = n

}
return

}

Deferred code

Suppose you have a function in which you open a file and perform various writes and
reads on it. In such a function there are often spots where you want to return early. If you
do that, you will need to close the file descriptor you are working on. This often leads to
the following code:

Listing 3.6. Without defer

func ReadWrite() bool {
file.Open("file")
// Do your thing
if failureX {

Deferred code 35

file.Close() ←
return false

}

if failureY {
file.Close() ←
return false

}
file.Close() ←
return true

}

Here a lot of code is repeated. To overcome this Go has the defer statement. After defer
you specify a function which is called just before a return from the function is executed.

The code above could be rewritten as follows. This makes the function more readable,
shorter and puts the Close right next to the Open.

Listing 3.7. With defer

func ReadWrite() bool {
file.Open("file")
defer file.Close() ← file.Close() is added to the defer list

// Do your thing
if failureX {

return false ← Close() is now done automatically

}
if failureY {

return false ← And here too

}
return true

}

You can put multiple functions on the “deferred list”, like this example from [12]:

for i := 0; i < 5; i++ {
defer fmt.Printf("%d ", i)

}

Deferred functions are executed in LIFO order, so the above code prints: 4 3 2 1 0.

With defer you can even change return values, provided that you are using named result
parameters and a function literalb, i.e:

Listing 3.8. Function literal

defer func() {
/* ... */

}() ← () is needed here

Or this example which makes it easier to understand why and where you need the braces:

Listing 3.9. Function literal with parameters

bA function literal is sometimes called a closure.

36 Chapter 3: Functions

defer func(x int) {
/* ... */

}(5) ← Give the input variable x the value 5

In that (unnamed) function you can access any named return parameter:

Listing 3.10. Access return values within defer

func f() (ret int) { ← ret is initialized with zero

defer func() {
ret++ ← Increment ret with 1

}()
return 0 ← 1 not 0 will be returned!

}

Variadic parameters

Functions that take variadic parameters are functions that have a variable number of pa-
rameters. To do this, you first need to declare your function to take variadic arguments:

func myfunc(arg ...int) {}

The arg ... int instructs Go to see this as a function that takes a variable number of ar-
guments. Note that these arguments all have the type int. Inside your function’s body the
variable arg is a slice of ints:

for _, n := range arg {
fmt.Printf("And the number is: %d\n", n)

}

If you don’t specify the type of the variadic argument it defaults to the empty interface
interface{} (see chapter 6). Suppose we have another variadic function called myfunc2,
the following example shows how to pass the variadic arguments to it:

func myfunc(arg ...int) {
myfunc2(arg...) ← Pass it as-is

myfunc2(arg[:2]...) ← Slice it

}

Functions as values

As with almost everything in Go, functions are also just values. They can be assigned to
variables as follows:

Listing 3.11. Anonymous function

func main() {
a := func() { ← Define a nameless function and assign to a

println("Hello")
} ← No () here

a() ← Call the function

}

Callbacks 37

If we use fmt.Printf("%T\n", a) to print the type of a, it prints func().

Functions–as–values may also be used in other places, like in maps. Here we convert from
integers to functions:

Listing 3.12. Functions as values in maps

var xs = map[int]func() int{
1: func() int { return 10 },
2: func() int { return 20 },
3: func() int { return 30 }, ← Mandatory ,

/* ... */
}

Or you can write a function that takes a function as its parameter, for example a Map func-
tion that works on int slices. This is left as an exercise for the reader, see exercise Q12 on
page 39.

Callbacks

With functions as values they are easy to pass to functions, from where they can be used
as callbacks. First define a function that does “something” with an integer value:

func printit(x int) { ← Function returns nothing

fmt.Print("%v\n", x) ← Just print it

}

The signature of this function is: func printit(int), orwithout the functionname: func(int).
To create a new function that uses this one as a callback we need to use this signature:

func callback(y int, f func(int)) { ← f will hold the function

f(y) ← Call the callback f with y

}

Panic and recovering

Godoes not have an exceptionmechanism, like that in Java for instance: you can not throw
exceptions. Instead it uses a panic-and-recover mechanism. It is worth remembering that
you should use this as a last resort, your code will not look, or be, better if it is littered with
panics. It’s a powerful tool: use it wisely. So, how do you use it?

The following description was taken from [11]:

Panic
is a built-in function that stops the ordinary flow of control and begins panicking.
When the function F calls panic, execution of F stops, any deferred functions in F are
executed normally, and then F returns to its caller. To the caller, F then behaves like
a call to panic. The process continues up the stack until all functions in the current
goroutine have returned, at which point the program crashes.

Panics can be initiated by invoking panic directly. They can also be caused by run-
time errors, such as out-of-bounds array accesses.

38 Chapter 3: Functions

Recover
is a built-in function that regains control of a panicking goroutine. Recover is only
useful inside deferred functions.

During normal execution, a call to recoverwill return nil and have no other effect.
If the current goroutine is panicking, a call to recover will capture the value given
to panic and resume normal execution.

This function checks if the function it gets as argument will panic when it is executedc:

func throwsPanic(f func()) (b bool) { ..0

defer func() { ..1

if x := recover(); x != nil {
b = true

}
}()

f() ..2

return ..3

}

..0 We define a new function throwsPanic that takes a fuction as an argument, see
“Functions as values”. It returns true when this function will panic, otherwise false;

..1 Wedefine a defer function that utilizes recover, if the current goroutine panics, this
defer function will notice that. If recover() returns non-nil we set b to true;

..2 Execute the function we received as the argument;

..3 Return the value of b. Because b is a named return parameter (page 33), we don’t
specify b.

Exercises

Q6. (4) Average

1. Write a function that calculates the average of a float64 slice.

Q7. (3) Integer ordering

1. Write a function that returns its (two) parameters in the right, numerical (ascend-
ing) order:
f(7,2)→ 2,7
f(2,7)→ 2,7

Q8. (4) Scope

1. What is wrong with the following program?

1package main

3import "fmt"

cCopied from a presentation of Eleanor McHugh.

Exercises 39

5func main() {
6for i := 0; i < 10; i++ {
7fmt.Printf("%v\n", i)
8}
9fmt.Printf("%v\n", i)
10}

Q9. (5) Stack

1. Create a simple stack which can hold a fixed amount of ints. It does not have to
grow beyond this limit. Define both a push – put something on the stack – and a pop
– retrieve something from the stack – function. The stack should be a LIFO (last in,
first out) stack.

Figure 3.1. A simple LIFO stack

push(k)

pop() k
k

i

l

m

i++

i--

0

2. Bonus. Write a Stringmethodwhich converts the stack to a string representation.
This way you can print the stack using: fmt.Printf("My stack %v\n", stack)

The stack in the figure could be represented as: [0:m] [1:l] [2:k]

Q10. (5) Var args

1. Write a function that takes a variable numbers of ints and prints each integer on
a separate line

Q11. (5) Fibonacci

1. The Fibonacci sequence starts as follows: 1, 1, 2, 3, 5, 8, 13, . . . Or in mathemati-
cal terms: x1 = 1;x2 = 1;xn = xn−1 + xn−2 ∀n > 2.

Write a function that takes an int value and gives thatmany terms of the Fibonacci
sequence.

Q12. (4) Map function A map()-function is a function that takes a function and a list. The
function is applied to each member in the list and a new list containing these calculated
values is returned. Thus:

map(f(), (a1, a2, . . . , an−1, an)) = (f(a1), f(a2), . . . , f(an−1), f(an))

1. Write a simple map()-function in Go. It is sufficient for this function only to work
for ints.

2. Expand your code to also work on a list of strings.

Q13. (3) Minimum and maximum

40 Chapter 3: Functions

1. Write a function that calculates the maximum value in an int slice ([]int).

2. Write a function that calculates the minimum value in a int slice ([]int).

Q14. (5) Bubble sort

1. Write a function that performs Bubble sort on slice of ints. From [32]:

It works by repeatedly stepping through the list to be sorted, comparing
each pair of adjacent items and swapping them if they are in the wrong
order. The pass through the list is repeated until no swaps are needed,
which indicates that the list is sorted. The algorithm gets its name from
the way smaller elements “bubble” to the top of the list.

[32] also gives an example in pseudo code:

procedure bubbleSort(A : list of sortable items)
do
swapped = false
for each i in 1 to length(A) - 1 inclusive do:
if A[i-1] > A[i] then
swap(A[i-1], A[i])
swapped = true

end if
end for

while swapped
end procedure

Q15. (6) Functions that return functions

1. Write a function that returns a function that performs a+2 on integers. Name the
function plusTwo. You should then be able do the following:

p := plusTwo()
fmt.Printf("%v\n", p(2))

Which should print 4. See section Callbacks on page 37 for information about this
topic.

2. Generalize the function from 1, and create a plusX(x) which returns a functions
that add x to an integer.

Answers 41

Answers

A6. (4) Average

1. The following function calculates the average.

Listing 3.13. Average function in Go

func average(xs []float64) (avg float64) { ..0

sum := 0.0
switch len(xs) {

case 0: ..1

avg = 0

default: ..2

for _, v := range xs {
sum += v

}

avg = sum / float64(len(xs)) ..3

}

return ..4

}

..0 We use a named return parameter;

..1 If the length is zero, we return 0;

..2 Otherwise we calculate the average;

..3 We have to convert the value to a float64 to make the division work;

..4 We have an avarage, return it.

A7. (3) Integer ordering

1. Herewe can use themultiple return values (section “Multiple return values”) from
Go:

func order(a, b int) (int, int) {
if a > b {

return b,a
}
return a,b

}

A8. (4) Scope

1. The program does not even compile, because i on line 9 is not defined: i is only
defined within the for-loop. To fix this the function main() should become:

func main() {
var i int
for i = 0; i < 10; i++ {

42 Chapter 3: Functions

fmt.Printf("%v\n", i)
}
fmt.Printf("%v\n", i)

}

Now i is defined outside the for-loop and still visible afterwards. This code will
print the numbers 0 through 10.

A9. (5) Stack

1. First we define a new type that represents a stack; we need an array (to hold the
keys) and an index, which points to the last element. Our small stack can only hold
10 elements.

type stack struct { ← stack is not exported

i int
data [10]int

}

Next we need the push and pop functions to actually use the thing. First we show
the wrong solution! In Go data passed to functions is passed-by-value meaning a
copy is created and given to the function. The first stab for the function push could
be:

func (s stack) push(k int) { ← Works on copy of argument

if s.i+1 > 9 {
return

}
s.data[s.i] = k
s.i++

}

The function works on the s which is of the type stack. To use this we just call
s.push(50), to push the integer 50 on the stack. But the push function gets a copy
of s, so it is not working the real thing. Nothing gets pushed to our stack this way,
for example the following code:

var s stack ← make s a simple stack variable

s.push(25)
fmt.Printf("stack %v\n", s);
s.push(14)
fmt.Printf("stack %v\n", s);

prints:

stack [0:0]
stack [0:0]

To solve this we need to give the function push a pointer to the stack. This means
we need to change push from

func (s stack)push(k int)→ func (s *stack)push(k int)

We should now use new() (see “Allocation with new” in chapter 5) to create a
pointer to a newly allocated stack, so line 1 from the example above needs to be
s := new(stack)

Answers 43

And our two functions become:

func (s *stack) push(k int) {
s.data[s.i] = k
s.i++

}

func (s *stack) pop() int {
s.i--
return s.data[s.i]

}

Which we then use as follows

func main() {
var s stack
s.push(25)
s.push(14)
fmt.Printf("stack %v\n", s)

}

2. While thiswas a bonus question, having the ability to print the stackwas very valu-
able when writing the code for this exercise. According to the Go documentation
fmt.Printf("%v") can print any value (%v) that satisfies the Stringer interface.
For this to work we only need to define a String() function for our type:

Listing 3.14. stack.String()

func (s stack) String() string {
var str string
for i := 0; i <= s.i; i++ {

str = str + "[" +
strconv.Itoa(i) + ":" + strconv.Itoa(s.data[i

]) + "]"
}
return str

}

A10. (5) Var args

1. For this we need the ...-syntax to signal we define a function that takes an arbi-
trary number of arguments.

Listing 3.15. A function with variable number of arguments

package main

import "fmt"

func main() {
printthem(1, 4, 5, 7, 4)

44 Chapter 3: Functions

printthem(1, 2, 4)
}

func printthem(numbers ... int) { ← numbers is now a slice of ints

for _, d := range numbers {
fmt.Printf("%d\n", d)

}
}

A11. (5) Fibonacci

1. The following program calculates the Fibonacci numbers.

Listing 3.16. Fibonacci function in Go

package main

import "fmt"

func fibonacci(value int) []int {

x := make([]int, value) ..0

x[0], x[1] = 1, 1 ..1

for n := 2; n < value; n++ {

x[n] = x[n-1] + x[n-2] ..2

}

return x ..3

}

func main() {

for _, term := range fibonacci(10) { ..4

fmt.Printf("%v ", term)
}

}

..0 We create an array to hold the integers up to the value given in the function
call;

..1 Starting point of the Fibonicai calculation;

..2 xn = xn−1 + xn−2;

..3 Return the entire array;

..4 Using the range keyword we ”walk” the numbers returned by the fibonacci
funcion. Here up to 10. And we print them.

A12. (4) Map function

Listing 3.17. A Map function

1. func Map(f func(int) int, l []int) []int {

Answers 45

j := make([]int, len(l))
for k, v := range l {

j[k] = f(v)
}
return j

}

func main() {
m := []int{1, 3, 4}
f := func(i int) int {

return i * i
}
fmt.Printf("%v", (Map(f, m)))

}

2. Answer to question but now with strings

A13. (3) Minimum and maximum

1. This a function for calculating a maximum:

func max(l []int) (max int) { ..0

max = l[0]

for _, v := range l { ..1

if v > max { ..2

max = v
}

}

return ..3

}

..0 We use a named return parameter;

..1 Loop over l. The index of the element is not important;

..2 If we find a new maximum, remember it;

..3 A “lone” return, the current value of max is now returned.

2. This a function for calculating a minimum, that is almost identical to max:

func min(l []int) (min int) {
min = l[0]
for _, v := range l {

if v < min {
min = v

}
}
return

}

The interested reader may combine max and min into one function with a selector
that lets you choose between the minimum or the maximum, or one that returns
both values.

46 Chapter 3: Functions

A14. (5) Bubble sort

1. The Bubble sort isn’t terribly efficient, for n elements it scalesO(n2). See Quick-
Sort [24] for a better sorting algorithm.

But Bubble sort is easy to implement, the following is an example.

Listing 3.18. Bubble sort

func main() {
n := []int{5, -1, 0, 12, 3, 5}
fmt.Printf("unsorted %v\n", n)
bubblesort(n)
fmt.Printf("sorted %v\n", n)

}

func bubblesort(n []int) {
for i := 0; i < len(n) - 1; i++ {

for j := i + 1; j < len(n); j++ {
if n[j] < n[i] {

n[i], n[j] = n[j], n[i]
}

}
}

}

Because a slice is a reference type the bubblesort function works and does not
need to return a sorted slice.

A15. (6) Functions that return functions

1. func main() {
p2 := plusTwo()
fmt.Printf("%v\n",p2(2))

}

func plusTwo() func(int) int { ..0

return func(x int) int { return x + 2 } ..1

}

..0 Define a new function that returns a function. See how you you can just
write down what you mean;

..1 Function literals at work, we define the +2–function right there in the return
statement.

2. Here we use a closure:

func plusX(x int) func(int) int { ..0

return func(y int) int { return x + y } ..1

}

Answers 47

..0 Again define a function that returns a function;

..1 Use the local variable x in the function literal.

4 Packages

“^”

Answer to whether there is a bit wise negation
operator.

KEN THOMPSON

Packages are a collection of functions and data. You declare a package with the package
keyword. The file name does not have to match the package name. The convention for
package names is to use lowercase characters. Go packages may consist of multiple files,
but they share the package <name> line. Let’s define a package even in the file even.go.

Listing 4.1. A small package

package even ← Start our own namespace

func Even(i int) bool { ← Exported function

return i % 2 == 0
}

func odd(i int) bool { ← Private function

return i % 2 == 1
}

Names that start with a capital letter are exported and may be used outside your package,
more on that later.

Now we just need to build the package. We create a directory under $GOPATH, copy the
even.go to there (see “Compiling and running code” in chapter 2).

% mkdir $GOPATH/src/even ← Create top-level directory
% cp even.go $GOPATH/src/even ← Copy the package file
% go build even ← Build it

Next we can use the package in our own program myeven.go:

Listing 4.2. Use of the even package

package main

import (..0

"even" ..1

"fmt" ..2

)

func main() {
i := 5

fmt.Printf("Is %d even? %v\n", i, even.Even(i)) ..3

}

Identifiers 49

..0 Import the following packages;

..1 The local package even is imported here;

..2 The official fmt package gets imported;

..3 Use the function from the even package. The syntax for accessing a function from a
package is <package>.Function().

% go build myeven.go
% ./myeven
Is 5 even? false

In Go, a function from a package is exported (visible outside the package, i.e. public) when
the first letter of the function name is a capital, hence the function name Even. If we change
our myeven.go on line 10 to using the unexported function even.odd:

fmt.Printf("Is %d even? %v\n", i, even.odd(i))

We get an error when compiling, because we are trying to use a private function:

myeven.go:10: cannot refer to unexported name even.odd

To summarize:

• Public functions have a name starting with a capital letter;

• Private function have a name starting with a lowercase letter.

This convention also holds true for other names (new types, global variables) you define in
a package. Note that the term “capital” is not limited to US ASCII, it extends into the entire
Unicode range. So capital Greek, Coptic, etc. is OK too.

Identifiers

Names are as important in Go as in any other language. In some cases they even have
semantic effect: for instance, the visibility of a name outside a package is determined by
whether its first character is upper case. It’s therefore worth spending a little time talking
about naming conventions in Go programs.

The convention that is used was to leave well-known legacy not-quite-words alone rather
than try to figure out where the capital letters go. Atoi, Getwd, Chmod. Camelcasing works
best when you have whole words to work with: ReadFile, NewWriter, MakeSlice.

Package names

When a package is imported (with import), the package name becomes an accessor for the
contents. After

import "bytes"

50 Chapter 4: Packages

the importing package can talk about bytes.Buffer. It’s helpful if everyone using the pack-
age can use the same name to refer to its contents, which implies that the package name
should be good: short, concise, and evocative. By convention, packages are given lower
case, single-word names; there should be no need for underscores or mixedCaps. Err on
the side of brevity, since everyone using your package will be typing that name. And don’t
worry about collisions a priori. The package name is only the default name for imports.
With the above import you can use bytes.Buffer. With

import bar "bytes"

it becomes bar.Buffer. So it does need not be unique across all source code, and in the
rare case of a collision the importing package can choose a different name to use locally.
In any case, confusion is rare because the file name in the import determines just which
package is being used.

Another convention is that the package name is the base name of its source directory;
the package in src/pkg/compress/gzip is imported as compress/gzip but has name gzip, not
compress_gzip and not compressGzip.

The importer of a package will use the name to refer to its contents, so exported names in
the package can use that fact to avoid stutter. For instance, the buffered reader type in the
bufio package is called Reader, not BufReader, because users see it as bufio.Reader, which
is a clear, concise name. Moreover, because imported entities are always addressed with
their package name, bufio.Reader does not conflict with io.Reader. Similarly, the function
to make new instances of ring.Ring (package container/ring) —which is the definition of
a constructor in Go—would normally be called NewRing, but since Ring is the only type
exported by the package, and since the package is called ring, it’s called just New. Clients
of the package see that as ring.New. Use the package structure to help you choose good
names.

Another short example is once.Do (see package sync); once.Do(setup) readswell andwould
not be improved by writing once.DoOrWaitUntilDone(setup). Long names don’t automati-
cally make things more readable. If the name represents something intricate or subtle, it’s
usually better to write a helpful doc comment than to attempt to put all the information
into the name.

Finally, the convention in Go is to use MixedCaps or mixedCaps rather than underscores
to write multi-word names.

Documenting packages
This text is copied
from [12]. Every package should have a package comment, a block comment preceding the package

clause. For multi-file packages, the package comment only needs to be present in one file,
and any one will do. The package comment should introduce the package and provide
information relevant to the package as a whole. It will appear first on the go doc page
and should set up the detailed documentation that follows. An example from the official
regexp package:

/*
The regexp package implements a simple library for
regular expressions.

The syntax of the regular expressions accepted is:

Testing packages 51

regexp:
concatenation '|' concatenation

*/
package regexp

Each defined (and exported) function should have a small line of text documenting the
behavior of the function. An example from the fmt package:

// Printf formats according to a format specifier and writes to standard
// output. It returns the number of bytes written and any write error
// encountered.
func Printf(format string, a ...interface) (n int, err error)

Testing packages

InGo it is customary towrite (unit) tests for your package. Writing tests involves the testing
package and the program go test. Both have excellent documentation. When you include
tests with your package keep in mind that they have to build using the standard Makefile
(see section “??”).

The testing itself is carried out with go test. The go test program runs all the test func-
tions. Without any defined tests for our even package, go test yields:

% go test
? even [no test files]

Let us fix this by defining a test in a test file. Test files reside in the package directory and
are named *_test.go. Those test files are just like other Go programs, but go testwill only
execute the test functions. Each test function has the same signature and its name should
start with Test:

func TestXxx(t *testing.T) ← Test<Capital>restOftheName

When writing test you will need to tell go test that a test has failed or was successful.
A successful test function just returns. When the test fails you can signal this with the
following functions [15]. These are themost important ones (see go doc testing formore):

func (t *T) Fail()

Failmarks the test function as having failed but continues execution.

func (t *T) FailNow()

FailNow marks the test function as having failed and stops its execution. Execution will
continue at the next test. So any other test in this file are skipped too.

func (t *T) Log(args ...interface{})

Log formats its arguments using default formatting, analogous to Print(), and records the
text in the error log.

func (t *T) Fatal(args ...interface{})

52 Chapter 4: Packages

Fatal is equivalent to Log() followed by FailNow().

Putting all this together we can write our test. First we pick a name: even_test.go. Then
we add the following contents:

Listing 4.3. Test file for even package

1package even

3import "testing"

5func TestEven(t *testing.T) {
6if ! Even(2) {
7t.Log("2 should be even!")
8t.Fail()
9}
10}

Note that we use package even on line 1, the tests fall in the same namespace as the pack-
age we are testing. This not only convenient, but also allows tests of unexported function
and structures. We then import the testing package and on line 5 we define the only test
function in this file. The displayed Go code should not hold any surprises: we check if the
Even function works OK. Now, the moment we’ve been waiting for, executing the test:

% go test
ok even 0.001s

Our test ran and reported ok. Success!

To show how a failed test looks we redefine our test function:

// Entering the twilight zone
func TestEven(t *testing.T) {

if Even(2) {
t.Log("2 should be odd!")
t.Fail()

}
}

We now get:

FAIL even 0.004s
--- FAIL: TestEven (0.00 seconds)

2 should be odd!
FAIL

And you can act accordingly (by fixing the test for instance).

Writing new packages should go hand in hand with writing (some) documentation and
test functions. It will make your code better and it shows that you really put in the
effort.

Useful packages 53

Useful packages

The standard Go repository includes a huge number of packages and it is even possible to
install more along side your current Go installation. It is very enlightening to browse the
$GOROOT/src/pkg directory and look at the packages. We cannot comment on each package,
but the following are worth a mention: a

fmt
Package fmt implements formatted I/O with functions analogous to C’s printf and
scanf. The format verbs are derived from C’s but are simpler. Some verbs (%-
sequences) that can be used:

%v
The value in a default format. when printing structs, the plus flag (%+v) adds
field names;

%#v
a Go-syntax representation of the value.

%T
a Go-syntax representation of the type of the value;

io
This package provides basic interfaces to I/O primitives. Its primary job is to wrap
existing implementations of suchprimitives, such as those in package os, into shared
public interfaces that abstract the functionality, plus some other related primitives.

bufio
This package implements buffered I/O. It wraps an io.Reader or io.Writer object,
creating another object (Reader or Writer) that also implements the interface but
provides buffering and some help for textual I/O.

sort
The sort package provides primitives for sorting arrays and user-defined collec-
tions.

strconv
The strconv package implements conversions to and from string representations of
basic data types.

os
The ospackage provides a platform-independent interface to operating system func-
tionality. The design is Unix-like.

sync
The package sync provides basic synchronization primitives such as mutual exclu-
sion locks.

flag
The flag package implements command-line flag parsing. See “Command line argu-
ments” on page 92.

aThe descriptions are copied from the packages’ go doc. Extra remarks are type set in italic.

54 Chapter 4: Packages

encoding/json
The encoding/json package implements encoding and decoding of JSON objects as
defined in RFC 4627 [6].

text/template
Data-driven templates for generating textual output such as HTML.

Templates are executed by applying them to a data structure. Annotations in the
template refer to elements of the data structure (typically a field of a struct or a key
in amap) to control execution andderive values to be displayed. The templatewalks
the structure as it executes and the “cursor” @ represents the value at the current
location in the structure.

net/http
The net/http package implements parsing of HTTP requests, replies, and URLs and
provides an extensible HTTP server and a basic HTTP client.

unsafe
The unsafe package contains operations that step around the type safety of Go pro-
grams. Normally you don’t need this package.

reflect
The reflect package implements run-time reflection, allowing a program to manip-
ulate objects with arbitrary types. The typical use is to take a value with static type
interface{} and extract its dynamic type information by calling TypeOf, which re-
turns an object with interface type Type.

See chapter 6, section “Introspection and reflection”.

os/exec
The os/exec package runs external commands.

Exercises

Q16. (2) Stack as package

1. See the Q9 exercise. In this exercise we want to create a separate package for that
code. Create a proper package for your stack implementation, Push, Pop and the
Stack type need to be exported.

2. Write a simple unit test for this package. You should at least test that a Pop works
after a Push.

Q17. (7) Calculator

1. Create a reverse polish calculator. Use your stack package.

Answers 55

Answers

A16. (2) Stack as package

1. There are a few details that should be changed to make a proper package for our
stack. First, the exported functions should beginwith a capital letter and so should
Stack. The package file is named stack-as-package.go and contains:

Listing 4.4. Stack in a package

package stack

// Stack holds the items.
type Stack struct {

i int
data [10]int

}

// Push pushes an item on the stack.
func (s *Stack) Push(k int) {

s.data[s.i] = k
s.i++

}

// Pop pops an item from the stack.
func (s *Stack) Pop() (ret int) {

s.i--
ret = s.data[s.i]
return

}

2. To make the unit testing work properly you need to do some preparations. We’ll
come to those in a minute. First the actual unit test. Create a file with the name
pushpop_test.go, with the following contents:

Listing 4.5. Push/Pop test

package stack

import "testing"

func TestPushPop(t *testing.T) {
c := new(Stack)
c.Push(5)
if c.Pop() != 5 {

t.Log("Pop doesn't give 5")
t.Fail()

}
}

56 Chapter 4: Packages

For go test toworkweneed to put our package files in a directoryunder $GOPATH/src:

% mkdir $GOPATH/src/stack
% cp pushpop_test.go $GOPATH/src/stack
% cp stack-as-package.go $GOPATH/src/stack

Yields:

% go test stack
ok stack 0.001s

A17. (7) Calculator

1. This is one answer:

Listing 4.6. A (rpn) calculator

package main

import ("bufio"; "os"; "strconv"; "fmt")

var reader *bufio.Reader = bufio.NewReader(os.Stdin)
var st = new(Stack)

type Stack struct {
i int
data [10]int

}

func (s *Stack) push(k int) {
if s.i+1 > 9 { return }
s.data[s.i] = k
s.i++

}

func (s *Stack) pop() (ret int) {
s.i--
if s.i < 0 { s.i = 0; return }
ret = s.data[s.i]
return

}

func main() {
for {

s, err := reader.ReadString('\n')
var token string
if err != nil { return }
for _, c := range s {

switch {
case c >= '0' && c <= '9':

token = token + string(c)
case c == ' ':

r, _ := strconv.Atoi(token)

Answers 57

st.push(r)
token = ""

case c == '+':
fmt.Printf("%d\n", st.pop()+st.pop())

case c == '*':
fmt.Printf("%d\n", st.pop()*st.pop())

case c == '-':
p := st.pop()
q := st.pop()
fmt.Printf("%d\n", q-p)

case c == 'q':
return

default:
//error

}
}

}
}

5 Beyond the basics

“Go has pointers but not pointer arithmetic.
You cannot use a pointer variable to walk
through the bytes of a string.”

Go For C++ Programmers
GO AUTHORS

Go has pointers. There is however no pointer arithmetic, so they act more like references
than pointers that you may know from C. Pointers are useful. Remember that when you
call a function in Go, the variables are pass-by-value. So, for efficiency and the possibility
to modify a passed value in functions we have pointers.

You declare a pointer by prefixing the type with an ’*’: var p *int. Now p is a pointer to
an integer value. All newly declared variables are assigned their zero value and pointers
are no different. A newly declared pointer, or just a pointer that points to nothing, has a
nil-value. In other languages this is often called a NULL pointer in Go it is just nil. Tomake
a pointer point to something you can use the address-of operator (&), which we here:

Listing 5.1. Use of a pointer

var p *int
fmt.Printf("%v", p) ← Prints nil

var i int ← Declare integer variable i

p = &i ← Make p point to i

fmt.Printf("%v", p) ← Prints something like 0x7ff96b81c000a

De-referencing a pointer is done by prefixing the pointer variable with ’*’:

Listing 5.2. Dereferencing a pointer

p = &i ← Take the address of i

*p = 8 ← Change the value of i

fmt.Printf("%v\n", *p) ← Prints 8

fmt.Printf("%v\n", i) ← Idem

As said, there is no pointer arithmetic, so if youwrite: *p++, it is interpreted as (*p)++: first
reference and then increment the value. a

Allocation

Go also has garbage collection, meaning that you don’t have to worry about memory deal-
location.

To allocate memory Go has two primitives, new and make. They do different things and
apply to different types, which can be confusing, but the rules are simple. The following

aSee exercise 18.

Allocation 59

sections show how to handle allocation in Go and hopefully clarifies the somewhat artifi-
cial distinction between new and make.

Allocation with new

Thebuilt-in function new is essentially the sameas its namesakes in other languages: new(T)
allocates zeroed storage for a new item of type T and returns its address, a value of type
*T. In Go terminology, it returns a pointer to a newly allocated zero value of type T. This is
important to remember:

new returns a pointer.

This means a user of the data structure can create one with new and get right to work. For
example, the documentation for bytes.Buffer states that “the zero value for Buffer is an
empty buffer ready to use.” Similarly, sync.Mutex does not have an explicit constructor or
Init method. Instead, the zero value for a sync.Mutex is defined to be an unlocked mutex.

The zero-value-is-useful property works transitively. Consider this type declaration. See
section “Defining your own types” on page 61.

type SyncedBuffer struct {
lock sync.Mutex
buffer bytes.Buffer

}

Values of type SyncedBuffer are also ready to use immediately upon allocation or just dec-
laration. In this snippet, both p and v will work correctly without further arrangement.

p := new(SyncedBuffer) ← Type *SyncedBuffer, ready to use

var v SyncedBuffer ← Type SyncedBuffer, idem

Allocation with make

Back to allocation. The built-in function make(T, args) serves a purpose different from
new(T). It creates slices, maps, and channels only, and it returns an initialized (not zero)
value of type T, not *T. The reason for the distinction is that these three types are, under
the covers, references to data structures that must be initialized before use. A slice, for
example, is a three-item descriptor containing a pointer to the data (inside an array), the
length, and the capacity; until those items are initialized, the slice is nil. For slices, maps,
and channels, make initializes the internal data structure and prepares the value for use.

make returns initialized (non zero) values.

For instance, make([]int, 10, 100) allocates an array of 100 ints and then creates a slice
structure with length 10 and a capacity of 100 pointing at the first 10 elements of the array.
In contrast, new([]int) returns a pointer to a newly allocated, zeroed slice structure, that
is, a pointer to a nil slice value. These examples illustrate the difference between new and
make.

var p *[]int = new([]int) ← Allocates slice structure; *p == nil

← Rarely useful

60 Chapter 5: Beyond the basics

var v []int = make([]int, 100) ← v refers to a new array of 100 ints

var p *[]int = new([]int) ← Unnecessarily complex

*p = make([]int, 100, 100)

v := make([]int, 100) ← Idiomatic

Remember that make applies only tomaps, slices and channels anddoes not return apointer.
To obtain an explicit pointer allocate with new.

new allocates; make initializes

The above two paragraphs can be summarized as:

• new(T) returns *T pointing to a zeroed T

• make(T) returns an initialized T

And of course make is only used for slices, maps and channels.

Constructors and composite literals

Sometimes the zero value isn’t good enough and an initializing constructor is necessary,
as in this example taken from the package os.

func NewFile(fd int, name string) *File {
if fd < 0 {

return nil
}
f := new(File)
f.fd = fd
f.name = name
f.dirinfo = nil
f.nepipe = 0
return f

}

There’s a lot of boiler plate in there. We can simplify it using a composite literal, which is
an expression that creates a new instance each time it is evaluated.

func NewFile(fd int, name string) *File {
if fd < 0 {

return nil
}
f := File{fd, name, nil, 0} ← Create a new File

return &f ← Return the address of f

}

It is OK to return the address of a local variable; the storage associated with the variable
survives after the function returns.

Defining your own types 61

In fact, taking the address of a composite literal allocates a fresh instance each time it is
evaluated, so we can combine these last two lines.b

return &File{fd, name, nil, 0}

The items (called fields) of a composite literal are laid out in order andmust all be present.
However, by labeling the elements explicitly as field:value pairs, the initializers can appear
in any order, with the missing ones left as their respective zero values. Thus we could say

return &File{fd: fd, name: name}

As a limiting case, if a composite literal contains no fields at all, it creates a zero value for
the type. The expressions new(File) and &File{} are equivalent.

Composite literals can also be created for arrays, slices, and maps, with the field labels
being indices or map keys as appropriate. In these examples, the initializations work re-
gardless of the values of Enone, and Einval, as long as they are distinct.

ar := [...]string {Enone: "no error", Einval: "invalid argument"}
sl := []string {Enone: "no error", Einval: "invalid argument"}
ma := map[int]string {Enone: "no error", Einval: "invalid argument"}

Defining your own types

Of course Go allows you to define new types, it does this with the type keyword:

type foo int

Creates a new type foo which acts like an int. Creating more sophisticated types is done
with the struct keyword. An example would be when we want record somebody’s name
(string) and age (int) in a single structure and make it a new type:

Listing 5.3. Structures

package main
import "fmt"

type NameAge struct {
name string ← Not exported

age int ← Not exported

}

func main() {
a := new(NameAge)
a.name = "Pete"; a.age = 42
fmt.Printf("%v\n", a)

}

Apropos, the output of fmt.Printf("%v\n", a) is

bTaking the address of a composite literal tells the compiler to allocate it on the heap, not the stack.

62 Chapter 5: Beyond the basics

&{Pete 42}

That is nice! Go knows how to print your structure. If you only want to print one, or a
few, fields of the structure you’ll need to use .<field name>. For example to only print the
name:

fmt.Printf("%s", a.name) ← %s formats a string

More on structure fields

As said each item in a structure is called a field. A struct with no fields: struct {}

Or one with fourc fields:

struct {
x, y int
A *[]int
F func()

}

If you omit the name for a field, you create an anonymous field, for instance:

struct {
T1 ← Field name is T1

*T2 ← Field name is T2

P.T3 ← Field name is T3

x, y int ← Field names are x and y

}

Note that field names that start with a capital letter are exported, i.e. can be set or read
from other packages. Field names that start with a lowercase are private to the current
package. The same goes for functions defined in packages, see chapter 4 for the details.

Methods

If you create functions that works on your newly defined type, you can take two routes:

1. Create a function that takes the type as an argument.

func doSomething(in1 *NameAge, in2 int) { /* ... */ }

This is (you might have guessed) a function call.

2. Create a function that works on the type (see receiver in listing 3.1):

func (in1 *NameAge) doSomething(in2 int) { /* ... */ }

This is amethod call, which can be used as:

var n *NameAge
n.doSomething(2)

cYes, four (4).

Conversions 63

Whether to use a function or method is entirely up to the programmer, but if you want to
satisfy an interface (see the next chapter) you must use methods. If no such requirement
exists it is a matter of taste whether to use functions or methods.

But keep the following in mind, this is quoted from [14]:

If x is addressable and &x’smethod set contains m, x.m() is shorthand for (&x).m().

In the above case this means that the following is not an error:

var n NameAge ← Not a pointer

n.doSomething(2)

Here Gowill search themethod list for n of type NameAge, come up empty andwill then also
search themethod list for the type *NameAge andwill translate this call to (&n).doSomething
(2).

There is a subtle but major difference between the following type declarations. Also see
[14, section “Type Declarations”]. Suppose we have:

// A Mutex is a data type with two methods, Lock and Unlock.
type Mutex struct { /* Mutex fields */ }
func (m *Mutex) Lock() { /* Lock implementation */ }
func (m *Mutex) Unlock() { /* Unlock implementation */ }

We now create two types in two different manners:

• type NewMutex Mutex;

• type PrintableMutex struct {Mutex }.

Now NewMutux is equal to Mutex, but is does not have any of the methods of Mutex. In other
words itsmethod set is empty. But PrintableMutex has inherited themethod set from Mutex.
In the words of [14]:

Themethod set of *PrintableMutex contains themethods Lockand Unlock bound
to its anonymous field Mutex.

Conversions

Sometimes you want to convert a type to another type. This is possible in Go, but there are
some rules. For starters, converting from one value to another is done by operators (that
look like functions: byte()) and not all conversions are allowed.

64 Chapter 5: Beyond the basics

Table 5.1. Valid conversions, float64 works the same as float32

From xb []byte xi []int xr []rune s string f float32 i int

To

[]byte × []byte(s)
[]int × []int(s)
[]rune × []rune(s)
string string(xb) string(xi) string(xr) ×
float32 × float32(i)
int int(f) ×

• From a string to a slice of bytes or runes.

mystring := "hello this is string"

byteslice := []byte(mystring)

Converts to a byte slice, each byte contains the integer value of the corresponding
byte in the string. Note that as strings in Go are encoded in UTF-8 some characters
in the string may end up in 1, 2, 3 or 4 bytes.

runeslice := []rune(mystring)

Converts to an rune slice, each rune contains a Unicode code point. Every character
from the string corresponds to one rune.

• From a slice of bytes or runes to a string.

b := []byte{'h','e','l','l','o'} ← Composite literal

s := string(b)
i := []rune{257,1024,65}
r := string(i)

For numeric values the following conversions are defined:

• Convert to a integer with a specific (bit) length: uint8(int);

• From floating point to an integer value: int(float32). This discards the fraction
part from the floating point value;

• The other way around: float32(int);

User defined types and conversions

How can you convert between the types you have defined yourself? We create two types
here Foo and Bar, where Bar is an alias for Foo:

type foo struct { int } ← Anonymous struct field

type bar foo ← bar is an alias for foo

Exercises 65

Then we:

var b bar = bar{1} ← Declare b to be a bar

var f foo = b ← Assign b to f

Which fails on the last line with:

cannot use b (type bar) as type foo in assignment

This can be fixed with a conversion:

var f foo = foo(b)

Note that converting structures that are not identical in their fields is more difficult. Also
note that converting b to a plain int also fails; an integer is not the same as a structure
containing an integer.

Exercises

Q18. (4) Pointer arithmetic

1. In the main text on page 58 there is the following text:

…there is no pointer arithmetic, so if you write: *p++, it is interpreted as
(*p)++: first dereference and then increment the value.

When you increment a value like this, for which types will it work?

2. Why doesn’t it work for all types?

Q19. (6) Map function with interfaces

1. Use the answer from exercise Q12, but nowmake it generic using interfaces. Make
it at least work for ints and strings.

Q20. (6) Pointers

1. Suppose we have defined the following structure:

type Person struct {
name string
age int

}

What is the difference between the following two lines?

var p1 Person
p2 := new(Person)

2. What is the difference between the following two allocations?

func Set(t *T) {
x = t

}

and

func Set(t T) {
x= &t

}

66 Chapter 5: Beyond the basics

Q21. (6) Linked List

1. Make use of the package container/list to create a (double) linked list. Push the
values 1, 2 and 4 to the list and then print it.

2. Create your own linked list implementation. And perform the same actions as in
question 1

Q22. (6) Cat

1. Write a program which mimics the Unix program cat. For those who don’t know
this program, the following invocation displays the contents of the file blah:

% cat blah

2. Make it support the n flag, where each line is numbered.

Q23. (8) Method calls

1. Suppose we have the following program. Note the package container/vector was
once part of Go, but has been removed when the append built-in was introduced.
However, for this question this isn’t important. The package implemented a stack-
like structure, with push and pop methods.

package main

import "container/vector"

func main() {
k1 := vector.IntVector{}
k2 := &vector.IntVector{}
k3 := new(vector.IntVector)
k1.Push(2)
k2.Push(3)
k3.Push(4)

}

What are the types of k1, k2 and k3?

2. Now, this programcompiles and runsOK.All the Push operationswork even though
the variables are of a different type. The documentation for Push says:

func (p *IntVector) Push(x int) Push appends x to the end of the vector.

So the receiver has to be of type *IntVector, why does the code above (the Push
statements) work correct then?

Answers 67

Answers

A18. (4) Pointer arithmetic

1. This will only work for pointers to point to numerical (int, uint, etc) values.

2. The ++ is only defined for numerical types and because there is no operator over-
loading in Go it fails (compilation error) otherwise.

A19. (6) Map function with interfaces

Listing 5.4. A generic map function in Go

1. package main

import "fmt"

//* define the empty interface as a type
type e interface{}

func mult2(f e) e {
switch f.(type) {
case int:

return f.(int) * 2
case string:

return f.(string) + f.(string) + f.(string) + f.(
string)

}
return f

}

func Map(n []e, f func(e) e) []e {
m := make([]e, len(n))
for k, v := range n {

m[k] = f(v)
}
return m

}

func main() {
m := []e{1, 2, 3, 4}
s := []e{"a", "b", "c", "d"}
mf := Map(m, mult2)
sf := Map(s, mult2)
fmt.Printf("%v\n", mf)
fmt.Printf("%v\n", sf)

}

A20. (6) Pointers

68 Chapter 5: Beyond the basics

1. In first line: var p1 Person allocates a Person-value to p1. The type of p1 is Person.

The second line: p2 := new(Person) allocates memory and assigns a pointer to p2.
The type of p2 is *Person.

2. In the second function, x points to a new (heap-allocated) variable twhich contains
a copy of whatever the actual argument value is.

In the first function, x points to the same thing that t does, which is the same thing
that the actual argument points to.

So in the second function, we have an “extra” variable containing a copy of the
interesting value.

A21. (6) Linked List

1.

2.

A22. (6) Cat

1. The following is implemention of catwhich also supports a n flag to number each
line.

Listing 5.5. A cat program

package main

..0

import (
"io"
"os"
"fmt"
"bufio"
"flag"

)

var numberFlag = flag.Bool("n", false, "number each line") ..1

..2

func cat(r *bufio.Reader) {
i := 1
for {

buf, e := r.ReadBytes('\n') ..3

if e == io.EOF { ..4

break
}

if *numberFlag { ..5

fmt.Fprintf(os.Stdout, "%5d %s", i, buf)
i++

} else { ..6

fmt.Fprintf(os.Stdout, "%s", buf)

Answers 69

}
}
return

}

func main() {
flag.Parse()
if flag.NArg() == 0 {

cat(bufio.NewReader(os.Stdin))
}
for i := 0; i < flag.NArg(); i++ {

f, e := os.Open(flag.Arg(i), os.O_RDONLY, 0)
if e != nil {

fmt.Fprintf(os.Stderr, "%s: error reading from
%s: %s\n",

os.Args[0], flag.Arg(i), e.String())
continue

}
cat(bufio.NewReader(f))

}
}

..0 Include all the packages we need;

..1 Define a new flag ”n”, which defaults to off. Note that we get the help for
free;

..2 Start the function that actually reads the file’s contents and displays it;

..3 Read one line at the time;

..4 Or stop if we hit the end;

..5 If we should number each line, print the line number and then the line itself;

..6 Otherwise we could just print the line.

A23. (8) Method calls

1. The type of k1 is vector.IntVector. Why? We use a composite literal (the {}), so
we get a value of that type back. The variable k2 is of *vector.IntVector, because
we take the address (&) of the composite literal. And finally k3 has also the type
*vector.IntVector, because new returns a pointer to the type.

2. The answer is given in [14] in the section “Calls”, where among other things it says:

A method call x.m() is valid if the method set of (the type of) x contains
m and the argument list can be assigned to the parameter list of m. If
x is addressable and &x’s method set contains m, x.m() is shorthand for
(&x).m().

In other words because k1 is addressable and *vector.IntVector does have the
Push method, the call k1.Push(2) is translated by Go into (&k1).Push(2) which
makes the type system happy again (and you too — now you know this).d

dAlso see section “Methods” in this chapter.

6 Interfaces

I have this phobia about having my body
penetrated surgically. You know what I mean?

eXistenZ
TED PIKUL

In Go, the word interface is overloaded to mean several different things. Every type hasThe following text is
from [30]. Written by
Ian Lance Taylor —
one of the authors of
Go.

an interface, which is the set of methods defined for that type. This bit of code defines a
struct type S with one field, and defines two methods for S.

Listing 6.1. Defining a struct and methods on it

type S struct { i int }
func (p *S) Get() int { return p.i }
func (p *S) Put(v int) { p.i = v }

You can also define an interface type, which is simply a set of methods. This defines an
interface I with two methods:

type I interface {
Get() int
Put(int)

}

S is a valid implementation for interface I, because it defines the two methods which I re-
quires. Note that this is true even though there is no explicit declaration that S implements
I.

A Go program can use this fact via yet another meaning of interface, which is an interface
value:

func f(p I) { ..0

fmt.Println(p.Get()) ..1

p.Put(1) ..2

}

..0 Declare a function that takes an interface type as the argument;

..1 As p implements interface I itmust have the Get()method;

..2 Same holds for the Put()method.

Here the variable p holds a value of interface type. Because S implements I, we can call f
passing in a pointer to a value of type S:

var s S; f(&s)

Interfaces 71

The reason we need to take the address of s, rather than a value of type S, is because we
defined the methods on s to operate on pointers, see the code above in listing 6.1. This is
not a requirement—we could have defined themethods to take values— but then the Put
method would not work as expected.

The fact that you do not need to declare whether or not a type implements an interface
means that Go implements a form of duck typing[34]. This is not pure duck typing, be-
cause when possible the Go compiler will statically check whether the type implements
the interface. However, Go does have a purely dynamic aspect, in that you can convert
from one interface type to another. In the general case, that conversion is checked at run
time. If the conversion is invalid — if the type of the value stored in the existing interface
value does not satisfy the interface to which it is being converted — the program will fail
with a run time error.

Interfaces in Go are similar to ideas in several other programming languages: pure ab-
stract virtual base classes in C++, typeclasses in Haskell or duck typing in Python. However
there is no other language which combines interface values, static type checking, dynamic
run time conversion, and no requirement for explicitly declaring that a type satisfies an
interface. The result in Go is powerful, flexible, efficient, and easy to write.

Which is what?

Let’s define another type that also implements the interface I:

type R struct { i int }
func (p *R) Get() int { return p.i }
func (p *R) Put(v int) { p.i = v }

The function f can now accept variables of type R and S. Suppose you need to know the
actual type in the function f. In Go you can figure that out by using a type switch.

func f(p I) {

switch t := p.(type) { ..0

case *S: ..1

case *R: ..2

case S: ..3

case R: ..4

default: ..5

}
}

..0 The type switch. Use (type) in a switch statement. We store the type in the variable
t;

..1 The actual type of p is a pointer to S;

..2 The actual type of p is a pointer to R;

..3 The actual type of p is a S;

..4 The actual type of p is a R;

72 Chapter 6: Interfaces

..5 It’s another type that implements I.

Using (type) outside a switch is illegal. A type switch isn’t the onlyway to discover the type
at run-time. You can also use a “comma, ok” form to see if an interface type implements a
specific interface:

if t, ok := something.(I); ok {
// something implements the interface I
// t is the type it has

}

When you are sure a variable implements an interface you can use:

t := something.(I)

Empty interface

Since every type satisfies the empty interface: interface{}. We can create a generic func-
tion which has an empty interface as its argument:

Listing 6.2. A function with an empty interface argument

func g(something interface{}) int {
return something.(I).Get()

}

The return something.(I).Get() is the tricky bit in this function. The value something has
type interface{}, meaning no guarantee of any methods at all: it could contain any type.
The .(I) is a type assertion which converts something to an interface of type I. If we have
that type we can invoke the Get() function. So if we create a new variable of the type *S,
we can just call g(), because *S also implements the empty interface.

s = new(S)
fmt.Println(g(s));

The call to g will work fine and will print 0. If we however invoke g() with a value that
does not implement I we have a problem:

Listing 6.3. Failing to implement an interface

i := 5 ← Make i a ``lousy'' int

fmt.Println(g(i))

This compiles, but when we run this we get slammed with:

panic: interface conversion: int is not main.I: missing method Get

Which is completely true, the built-in type int does not have a Get()method.

Methods

Methods are functions that have a receiver (see chapter 3). You can define methods on
any type (except on non-local types, this includes built-in types: the type int can not have
methods). You can however make a new integer type with its own methods. For example:

Methods 73

type Foo int

func (self Foo) Emit() {
fmt.Printf("%v", self)

}

type Emitter interface {
Emit()

}

Doing this on non-local (types defined in other packages) types yields:

Listing 6.4. Failure extending built-in types

func (i int) Emit() {
fmt.Printf("%d", i)

}

cannot define new methods
on non-local type int

Listing 6.5. Failure extending non-local types

func (a *net.AddrError) Emit() {
fmt.Printf("%v", a)

}

cannot define new methods
on non-local type net.AddrError

Methods on interface types

An interface defines a set of methods. A method contains the actual code. In other words,
an interface is the definition and the methods are the implementation. So a receiver can
not be an interface type, doing so results in a invalid receiver type ... compiler error.
The authoritative word from the language spec [14]:

The receiver type must be of the form T or *Twhere T is a type name. T is called
the receiver base type or just base type. The base type must not be a pointer or
interface type and must be declared in the same package as the method.

Pointers to interfaces

Creating a pointer to an interface value is a useless action in Go. It is in fact il-
legal to create a pointer to an interface value. The release notes for the release
2010-10-13 that made them illegal leave no room for doubt:

The language change is that uses of pointers to interface values no longer
automatically de-reference the pointer. A pointer to an interface value is
more often a beginner’s bug than correct code.

From the [13]. If not for this restriction, this code:

var buf bytes.Buffer
io.Copy(buf, os.Stdin)

would copy standard input into a copy of buf, not into buf itself. This is almost never
the desired behavior.

74 Chapter 6: Interfaces

Interface names

By convention, one-method interfaces are named by the method name plus the -er suffix:
Reader, Writer, Formatter etc.

There are a number of such names and it’s productive to honor them and the function
names they capture. Read, Write, Close, Flush, String and so on have canonical signatures
and meanings. To avoid confusion, don’t give your method one of those names unless it
has the same signature and meaning. Conversely, if your type implements a method with
the samemeaning as amethod on awell-known type, give it the same name and signature;
call your string-converter method String not ToString.Text copied from [12].

A sorting example

Recall the Bubblesort exercise (Q14), where we sorted an array of integers:

func bubblesort(n []int) {
for i := 0; i < len(n)-1; i++ {

for j := i + 1; j < len(n); j++ {
if n[j] < n[i] {

n[i], n[j] = n[j], n[i]
}

}
}

}

A version that sorts strings is identical except for the signature of the function:

func bubblesortString(n []string) { /* ... */ }

Using this approach would lead to two functions, one for each type. By using interfaces
we can make this more generic. Let’s create a new function that will sort both strings and
integers, something along the lines of this non-working example:

func sort(i []interface{}) { ..0

switch i.(type) { ..1

case string: ..2

// ...
case int:

// ...
}

return /* ... */ ..3

}

..0 Our function will receive a slice of empty interfaces;

..1 Using a type switch we find out what the actual type is of the input;

..2 And then sort accordingly;

..3 Return the sorted slice.

A sorting example 75

But when we call this function with sort([]int{1, 4, 5}), it fails with:
cannot use i (type []int) as type []interface in function argument

This is because Go can not easily convert to a slice of interfaces. Just converting to an
interface is easy, but to a slice is much more costly. To keep a long story short: Go does not The full mailing list

discussion on this
subject can be found
at [20].

(implicitly) convert slices for you.

So what is the Go way of creating such a “generic” function? Instead of doing the type
inference ourselves with a type switch, we let Go do it implicitly: The following steps are
required:

1. Define an interface type (called Sorter here) with a number of methods needed for
sorting. We will at least need a function to get the length of the slice, a function to
compare two values and a swap function;

type Sorter interface {
Len() int ← len() as a method

Less(i, j int) bool ← p[j] < p[i] as a method

Swap(i, j int) ← p[i], p[j] = p[j], p[i] as a method

}

2. Define new types for the slices we want to sort. Note that we declare slice types;

type Xi []int
type Xs []string

3. Implementation of the methods of the Sorter interface. For integers:

func (p Xi) Len() int { return len(p) }
func (p Xi) Less(i int, j int) bool { return p[j] < p[i] }
func (p Xi) Swap(i int, j int) { p[i], p[j] = p[j], p[i] }

And for strings:

func (p Xs) Len() int { return len(p) }
func (p Xs) Less(i int, j int) bool { return p[j] < p[i] }
func (p Xs) Swap(i int, j int) { p[i], p[j] = p[j], p[i] }

4. Write a generic Sort function that works on the Sorter interface.

func Sort(x Sorter) { ..0

for i := 0; i < x.Len() - 1; i++ { ..1

for j := i + 1; j < x.Len(); j++ {
if x.Less(i, j) {

x.Swap(i, j)
}

}
}

}

..0 x is now of the Sorter type;

..1 Using the defined functions, we implement Bubblesort.

76 Chapter 6: Interfaces

We can now use you generic Sort function as follows:

ints := Xi{44, 67, 3, 17, 89, 10, 73, 9, 14, 8}
strings := Xs{"nut", "ape", "elephant", "zoo", "go"}

Sort(ints)
fmt.Printf("%v\n", ints)
Sort(strings)
fmt.Printf("%v\n", strings)

Listing interfaces in interfaces

Take a look at the following example of an interface definition, this one is from the package
container/heap:

type Interface interface {
sort.Interface
Push(x interface{})
Pop() interface{}

}

Here another interface is listed inside the definition of heap.Interface, this may look odd,
but is perfectly valid, remember that on the surface an interface is nothing more than a
listing of methods. sort.Interface is also such a listing, so it is perfectly legal to include it
in the interface.

Introspection and reflection

In the following example we want to look at the “tag” (here named “namestr”) defined in
the type definition of Person. To do this we need the reflect package (there is no other way
in Go). Keep in mind that looking at a tag means going back to the type definition. So we
use the reflect package to figure out the type of the variable and then access the tag.

Listing 6.6. Introspection using reflection

..

..
0

.

..
1

.

..
2

type Person struct {
name string "namestr" ← "namestr" is the tag

age int
}

p1 := new(Person) ← new returns a pointer to Person

ShowTag(p1) ← ShowTag() is now called with this pointer

func ShowTag(i interface{}) {
switch t := reflect.TypeOf(i); t.Kind() { ← Get type, switch on Kind()

case reflect.Ptr: ← Its a pointer, hence a reflect.Ptr

tag := t.Elem().Field(0).Tag

..0 We are dealing with a Type and according to the documentationa:
ago doc reflect

A sorting example 77

// Elem returns a type’s element type.
// It panics if the type’s Kind is not Array, Chan, Map, Ptr, or Slice.
Elem() Type

So on t we use Elem() to get the value the pointer points to;

..1 We have now dereferenced the pointer and are ”inside” our structure. We now use
Field(0) to access the zeroth field;

..2 The struct StructField has a Tagmemberwhich returns the tag-name as a string. So
on the 0th field we can unleash .Tag to access this name: Field(0).Tag. This gives
us namestr.

To make the difference between types and values more clear, that a look at the following
code:

Listing 6.7. Reflection and the type and value

func show(i interface{}) {
switch t := i.(type) {
case *Person:
t := reflect.TypeOf(i) ← Go for type meta data

v := reflect.ValueOf(i) ← Go for the actual values

tag := t.Elem().Field(0).Tag ..0

name := v.Elem().Field(0).String() ..1

}
}

..0 Here we want to get to the “tag”. So we need Elem() to redirect the pointer, access
the first field and get the tag. Note we operate on t a reflect.Type;

..1 Now we want to get access to the value of one of the members and we employ
Elem() on v to do the redirection. Now we have arrived at the structure. Then we
go the the first field Field(0) and invoke the String()method on it.

Figure 6.1. Peeling away the layers using reflection. Going from
a *Person via Elem() using the methods described in go doc re-
flect to get the actual string contained within.

reflect.Ptr
.Elem()

reflect.Value
.Field(0)

reflect.StructField

.String()

"Albert Einstein"
"Albert Einstein"

78 Chapter 6: Interfaces

Setting a value works similarly as getting a value, but only works on exported members.
Again some code:

Listing 6.8. Reflect with private member

type Person struct {
name string "namestr" ← name

age int
}

func Set(i interface{}) {
switch i.(type) {
case *Person:
r := reflect.ValueOf(i)
r.Elem(0).Field(0).SetString("Albert

Einstein")
}

}

Listing 6.9. Reflect with public member

type Person struct {
Name string "namestr" ← Name

age int
}

func Set(i interface{}) {
switch i.(type) {
case *Person:
r := reflect.ValueOf(i)
r.Elem().Field(0).SetString("Albert

Einstein")
}

}

The code on the left compiles and runs, but when you run it, you are greeted with a stack
trace and a run time error:

panic: reflect.Value.SetString using value obtained using unexported field

The code on the right works OK and sets the member Name to “Albert Einstein”. Of course
this only works when you call Set() with a pointer argument.

Exercises

Q24. (6) Interfaces and compilation

1. The code in listing 6.3 on page 72 compiles OK — as stated in the text. But when
you run it you’ll get a runtime error, so something is wrong. Why does the code
compile cleanly then?

Q25. (5) Pointers and reflection

1. One of the last paragraphs in section “Introspection and reflection” on page 76, has
the following words:

The code on the right works OK and sets the member Name to “Albert
Einstein”. Of course this only works when you call Set() with a pointer
argument.

Why is this the case?

Q26. (7) Interfaces and max()

1. In exercise Q13 we created a max function that works on a slice of integers. The
question now is to create a program that shows the maximum number and that
works for both integers and floats. Try to make your program as generic as possi-
ble, although that is quite difficult in this case.

Answers 79

Answers

A24. (6) Interfaces and compilation

1. The code compiles because an integer type implements the empty interface and
that is the check that happens at compile time.

A proper way to fix this is to test if such an empty interface can be converted and,
if so, call the appropriatemethod. The Go code that defines the function g in listing
6.2 – repeated here:

func g(any interface{}) int { return any.(I).Get() }

Should be changed to become:

func g(any interface{}) int {
if v, ok := any.(I); ok { // Check if any can be converted

return v.Get() // If so invoke Get()
}
return -1 // Just so we return anything

}

If g() is called now there are no run-time errors anymore. The idiom used is called
“comma ok” in Go.

A25. (5) Pointers and reflection

1. When called with a non-pointer argument the variable is a copy (call-by-value). So
you are doing the reflection voodoo on a copy. And thus you are not changing the
original value, but only this copy.

A26. (7) Interfaces and max()

1. The following program calculates a maximum. It is as generic as you can get with
Go.

Listing 6.10. Generic way of calculating a maximum

package main

func Less(l, r interface{}) bool { ..0

switch l.(type) {
case int:

if _, ok := r.(int); ok {

return l.(int) < r.(int) ..1

}
case float32:

if _, ok := r.(float32); ok {

return l.(float32) < r.(float32) ..2

}
}
return false

80 Chapter 6: Interfaces

}

func main() {
var a, b, c int = 5, 15, 0
var x, y, z float32 = 5.4, 29.3, 0.0

if c = a; Less(a, b) { ..3

c = b
}

if z = x; Less(x, y) { ..4

z = y
}
println(c, z)

}

..0 Wecouldhave choosen tomake the return type of this function a interface{},
but that would mean that a caller would always have to a type assertion to
extra the actual type from the interface;

..1 All parameters are confirmed to be integers. Now perform the comparison;

..2 Parameters are float32;

..3 Get the maximum of a and b;

..4 Same for the floats.

7 Concurrency

• “Parallelism is about performance;

• Concurrency is about program design.”

Google IO 2010
ROBE PIKE

In this chapter we will show off Go’s ability for concurrent programming using channels
and goroutines. Goroutines are the central entity in Go’s ability for concurrency. But what
is a goroutine? From [12]:

They’re called goroutines because the existing terms — threads, coroutines,
processes, and so on — convey inaccurate connotations. A goroutine has a
simple model: it is a function executing in parallel with other goroutines in
the same address space. It is lightweight, costing little more than the alloca-
tion of stack space. And the stacks start small, so they are cheap, and grow by
allocating (and freeing) heap storage as required.

A goroutine is a normal function, except that you start it with the keyword go.

ready("Tea", 2) ← Normal function call

go ready("Tea", 2) ← ready() started as goroutine

The following idea for a programwas taken from [28]. We runa function as two goroutines,
the goroutines wait for an amount of time and then print something to the screen. On the
lines 14 and 15 we start the goroutines. The main function waits long enough, so that both
goroutines will have printed their text. Right now we wait for 5 seconds on line 17, but in
fact we have no idea how long we should wait until all goroutines have exited.

Listing 7.1. Go routines in action

8func ready(w string, sec int) {
9time.Sleep(time.Duration(sec) * time.Second)
10fmt.Println(w, "is ready!")
11}

13func main() {
14go ready("Tea", 2)
15go ready("Coffee", 1)
16fmt.Println("I'm waiting")
17time.Sleep(5 * time.Second)
18}

Listing 7.1 outputs:

I'm waiting ← Right away
Coffee is ready! ← After 1 second
Tea is ready! ← After 2 seconds

Concurrency 83

If we did notwait for the goroutines (i.e. remove line 17) the programwould be terminated
immediately and any running goroutines would die with it. To fix this we need some kind
of mechanism which allows us to communicate with the goroutines. This mechanism is
available to us in the form of channels. A channel can be compared to a two-way pipe
in Unix shells: you can send to and receive values from it. Those values can only be of a
specific type: the type of the channel. If we define a channel, we must also define the type
of the values we can send on the channel. Note that we must use make to create a channel:

ci := make(chan int)
cs := make(chan string)
cf := make(chan interface{})

Makes ci a channel on which we can send and receive integers, makes cs a channel for
strings and cf a channel for types that satisfy the empty interface. Sending on a channel
and receiving from it, is done with the same operator: <-. Depending on the operands it
figures out what to do:

ci <- 1 ← Send the integer 1 to the channel ci

<-ci ← Receive an integer from the channel ci

i := <-ci ← Receive from the channel ci and store it in i

Let’s put this to use.

Listing 7.2. Go routines and a channel

var c chan int ..0

func ready(w string, sec int) {
time.Sleep(time.Duration(sec) * time.Second)
fmt.Println(w, "is ready!")

c <- 1 ..1

}

func main() {

c = make(chan int) ..2

go ready("Tea", 2) ..3

go ready("Coffee", 1)
fmt.Println("I'm waiting, but not too long")

<-c ..4

<-c ..5

}

..0 Declare c to be a variable that is a channel of ints. That is: this channel can move
integers. Note that this variable is global so that the goroutines have access to it;

..1 Send the integer 1 on the channel c;

..2 Initialize c;

..3 Start the goroutines with the keyword go;

..4 Wait until we receive a value from the channel. Note that the value we receive is
discarded;

84 Chapter 7: Concurrency

..5 Two goroutines, two values to receive.

There is still some remaining ugliness; wehave to read twice from the channel (lines 14 and
15). This is OK in this case, but what if we don’t know how many goroutines we started?
This is where another Go built-in comes in: select. With select you can (among other
things) listen for incoming data on a channel.

Using select in our program does not really make it shorter, because we run too few go-
routines. We remove the lines 14 and 15 and replace them with the following:

Listing 7.3. Using select

14L: for {
15select {
16case <-c:
17i++
18if i > 1 {
19break L
20}
21}
22}

Wewill now wait as long as it takes. Only when we have received more than one reply on
the channel c will we exit the loop L.

Make it run in parallel

While our goroutineswere running concurrently, theywere not running in parallel. When
you do not tell Go anything there can only be one goroutine running at a time. With
runtime.GOMAXPROCS(n) you can set the number of goroutines that can run in parallel.
From the documentation:

GOMAXPROCS sets the maximum number of CPUs that can be executing si-
multaneously and returns the previous setting. If n < 1, it does not change the
current setting. This call will go away when the scheduler improves.

If you do not want to change any source code you can also set an environment variable
GOMAXPROCS to the desired value.

More on channels

When you create a channel in Go with ch := make(chan bool), an unbuffered channel for
bools is created. What does this mean for your program? For one, if you read (value
:= <-ch) it will block until there is data to receive. Secondly anything sending (ch<-5)
will block until there is somebody to read it. Unbuffered channels make a perfect tool for
synchronizing multiple goroutines.

But Go allows you to specify the buffer size of a channel, which is quite simply how many
elements a channel can hold. ch := make(chan bool, 4), creates a buffered channel of
bools that can hold 4 elements. The first 4 elements in this channel arewrittenwithout any
blocking. When you write the 5th element, your code will block, until another goroutine
reads some elements from the channel to make room.

Exercises 85

In conclusion, the following is true in Go:

ch := make(chan type, value)

{
value == 0 → unbuffered)
value > 0 → buffer value elements

Closing channels

When a channel is closed the reading side needs to know this. The following code will
check if a channel is closed.

x, ok = <-ch

Where ok is set to true the channel is not closed and we’ve read something. Otherwise ok
is set to false. In that case the channel was closed. TODO

more needs to be
written

Exercises

Q27. (4) Channels

1. Modify the program you created in exercise Q2 to use channels, in other words,
the function called in the body should now be a goroutine and communication
should happen via channels. You should not worry yourself on how the goroutine
terminates.

2. There are a few annoying issues left if you resolve question 1. One of the problems
is that the goroutine isn’t neatly cleaned up when main.main() exits. And worse,
due to a race condition between the exit of main.main() and main.shower() not all
numbers are printed. It should print up until 9, but sometimes it prints only to 8.
Adding a second quit-channel you can remedy both issues. Do this.a

Q28. (7) Fibonacci II

1. This is the same exercise as the one given page 39 in exercise 11. For completeness
the complete question:

The Fibonacci sequence starts as follows: 1, 1, 2, 3, 5, 8, 13, . . . Or in
mathematical terms: x1 = 1;x2 = 1;xn = xn−1 + xn−2 ∀n > 2.

Write a function that takes an int value and gives that many terms of
the Fibonacci sequence.

But now the twist: You must use channels.

aYou will need the select statement.

Answers 87

Answers

A27. (4) Channels

1. A possible program is:

Listing 7.4. Channels in Go

1package main

3import "fmt"

5func main() {
6ch := make(chan int)
7go shower(ch)
8for i := 0; i < 10; i++ {
9ch <- i
10}
11}

13func shower(c chan int) {
14for {
15j := <-c
16fmt.Printf("%d\n", j)
17}
18}

We start of in the usual way, then at line 6 we create a new channel of ints. In
the next line we fire off the function showerwith the ch variable as it argument, so
that we may communicate with it. Next we start our for-loop (lines 8-10) and in
the loop we send (with <-) our number to the function (now a goroutine) shower.

In the function shower we wait (as this blocks) until we receive a number (line
15). Any received number is printed (line 16) and then continue the endless loop
started on line 14.

2. An answer is

Listing 7.5. Adding an extra quit channel

1package main

3import "fmt"

5func main() {
6ch := make(chan int)
7quit := make(chan bool)
8go shower(ch, quit)
9for i := 0; i < 10; i++ {
10ch <- i
11}

88 Chapter 7: Concurrency

12quit <- false // or true, does not matter
13}

15func shower(c chan int, quit chan bool) {
16for {
17select {
18case j := <-c:
19fmt.Printf("%d\n", j)
20case <-quit:
21break
22}
23}
24}

On line 20 we read from the quit channel and we discard the value we read. We
could have used q := <-quit, but then we would have used the variable only once
— which is illegal in Go. Another trick you might have pulled out of your hat may
be: _ = <-quit. This is valid in Go, but the Go idiom favors the one given on line
20.

A28. (7) Fibonacci II

1. The following program calculates the Fibonacci numbers using channels.

Listing 7.6. A Fibonacci function in Go

package main
import "fmt"

func dup3(in <-chan int) (<-chan int, <-chan int, <-chan int) {
a, b, c := make(chan int, 2), make(chan int, 2), make(chan int

, 2)
go func() {

for {
x := <-in
a <- x
b <- x
c <- x

}
}()
return a, b, c

}

func fib() <-chan int {
x := make(chan int, 2)
a, b, out := dup3(x)
go func() {

x <- 0
x <- 1
<-a

Answers 89

for {
x <- <-a+<-b

}
}()
return out

}

func main() {
x := fib()
for i := 0; i < 10; i++ {

fmt.Println(<-x)
}

}

// See sdh33b.blogspot.com/2009/12/fibonacci-in-go.html

8 Communication

“Good communication is as stimulating as
black coffee, and just as hard to sleep after.”

ANNE MORROW LINDBERGH

In this chapterwe are going to look at the building blocks in Go for communicatingwith the
outsideworld. Wewill look at files, directories, networking and executing other programs.
Central to Go’s I/O are the interfaces io.Reader and io.Writer.

Reading from (and writing to) files is easy in Go. This program only uses the os package to
read data from the file /etc/passwd.

Listing 8.1. Reading from a file (unbuffered)

package main
import "os"

func main() {
buf := make([]byte, 1024)

f, _ := os.Open("/etc/passwd") ..0

defer f.Close() ..1

for {

n, _ := f.Read(buf) ..2

if n == 0 { break } ..3

os.Stdout.Write(buf[:n]) ..4

}
}

The following is happening here:

..0 Open the file, os.Open returns a *os.File, which implements io.Reader and io.Writer;

..1 Make sure we close f again;

..2 Read up to 1024 bytes at the time;

..3 We have reached the end of the file;

..4 Write the contents to os.Stdout

If you want to use buffered IO there is the bufio package:

Listing 8.2. Reading from a file (bufferd)

package main
import ("os"; "bufio")

func main() {
buf := make([]byte, 1024)

io.Reader 91

f, _ := os.Open("/etc/passwd") ..0

defer f.Close()

r := bufio.NewReader(f) ..1

w := bufio.NewWriter(os.Stdout)
defer w.Flush()
for {

n, _ := r.Read(buf) ..2

if n == 0 { break }
w.Write(buf[0:n])

}
}

..0 Open the file;

..1 Turn f into a buffered Reader. NewReader expects an io.Reader, so you might think
this will fail. But it does not. Anything that has such a Read() function implements
this interface. And from listing 8.1 we can see that *os.File indeed does so;

..2 Read from the Reader and write to the Writer, and thus print the file to the screen.

io.Reader

As mentioned above the io.Reader is an important interface in the language Go. A lot (if
not all) functions that need to read from something take an io.Reader as input. To fulfill
the interface a type needs to implement only one method: Read(p []byte) (n int, err
error). The writing side is (you may have guessed) an io.Writer, which has the Write
method.

If you think of a new type in your program or package and youmake it fulfill the io.Reader
or io.Writer interface, the whole standard Go library can be used on that type!

Some examples

The previous programs reads a file in its entirety, but a more common scenario is that you
want to read a file on a line-by-line basis. The following snippet shows a way to do just
that:

f, _ := os.Open("/etc/passwd"); defer f.Close()
r := bufio.NewReader(f) ← Make it a bufio to access the ReadString method

s, ok := r.ReadString('\n') ← Read a line from the input

// ... ← s holds the string, with the strings package you can parse it

Amore robust method (but slightly more complicated) is ReadLine, see the documentation
of the bufio package.

A common scenario in shell scripting is that you want to check if a directory exists and if
not, create one.

92 Chapter 8: Communication

Listing 8.3. Create a directory with the shell

if [! -e name]; then
mkdir name

else
error

fi

Listing 8.4. Create a directory with Go

if f, e := os.Stat("name"); e != nil {
os.Mkdir("name", 0755)

} else {
// error

}

The similarity between these two examples haveprompted comments thatGohas a ”script”-
like feel to it, i.e. programming in Go can be compared to programming in a interpreted
language (Python, Ruby, Perl or PHP).

Command line arguments

Arguments from the command line are available inside your program via the string slice
os.Args, provided you have imported the package os. The flag package has a more sophis-
ticated interface, and also provides a way to parse flags. Take this example from a DNS
query tool:

dnssec := flag.Bool("dnssec", false, "Request DNSSEC records") ..0

port := flag.String("port", "53", "Set the query port") ..1

flag.Usage = func() { ..2

fmt.Fprintf(os.Stderr, "Usage: %s [OPTIONS] [name ...]\n", os.Args[0])

flag.PrintDefaults() ..3

}

flag.Parse() ..4

..0 Define a bool flag, -dnssec. The variable must be a pointer otherwise the package
can not set its value;

..1 Idem, but for a port option;

..2 Slightly redefine the Usage function, to be a little more verbose;

..3 For every flag given, PrintDefaults will output the help string;

..4 Parse the flags and fill the variables.

After the flags have been parsed you can used them:

if *dnssec { ← Dereference the dnssec flag variable

// do something
}

Executing commands

The os/exec package has functions to run external commands, and is the premier way to
execute commands from within a Go program. It works by defining a *exec.Cmd structure
for which it defines a number of methods. Let’s execute ls -l:

Networking 93

import "os/exec"

cmd := exec.Command("/bin/ls", "-l") ← Create a *cmd

err := cmd.Run() ← Run() it

The above example just runs ”ls -l” without doing anything with the returned data, captur-
ing the standard output from a command is done as follows:

import "os/exec"

cmd := exec.Command("/bin/ls", "-l")
buf, err := cmd.Output() ← buf is a ([]byte)

Networking

All network related types and functions can be found in the package net. One of the most
important functions in there is Dial. When you Dial into a remote system the function
returns a Conn interface type, which can be used to send and receive information. The
function Dial neatly abstracts away the network family and transport. So IPv4 or IPv6,
TCP or UDP can all share a common interface.

Dialing a remote system (port 80) over TCP, then UDP and lastly TCP over IPv6 looks like
thisa:

conn, e := Dial("tcp", "192.0.32.10:80")
conn, e := Dial("udp", "192.0.32.10:80")
conn, e := Dial("tcp", "[2620:0:2d0:200::10]:80") ← Mandatory brackets

If there were no errors (returned in e), you can use conn to read and write. The primitives
defined in the package net are:

// Read reads data from the connection.
Read(b []byte)(n int, err error)

This makes conn an io.Reader.

// Write writes data to the connection.
Write(b []byte)(n int, err error)

This makes conn also an io.Writer, in fact conn is an io.ReadWriter.b

But these are the low level nooks and cranniesc, you will almost always use higher level
packages. Such as the http package. For instance a simple Get for http:

package main

import ("io/ioutil"; "http"; "fmt") ..0

func main() {

aIn case you are wondering, 192.0.32.10 and 2620:0:2d0:200::10 are www.example.org.
bThe variable conn also implements a closemethod, this really makes it an io.ReadWriteCloser.
cExercise Q33 is about using these.

www.example.org

94 Chapter 8: Communication

r, err := http.Get("http://www.google.com/robots.txt") ..1

if err != nil { fmt.Printf("%s\n", err.String()); return } ..2

b, err := ioutil.ReadAll(r.Body) ..3

r.Body.Close()

if err == nil { fmt.Printf("%s", string(b)) } ..4

}

..0 The imports needed;

..1 Use http’s Get to retrieve the html;

..2 Error handling;

..3 Read the entire document into b;

..4 If everything was OK, print the document.

Exercises

Q29. (8) Processes

1. Write a program that takes a list of all running processes and prints how many
child processes each parent has spawned. The output should look like:

Pid 0 has 2 children: [1 2]
Pid 490 has 2 children: [1199 26524]
Pid 1824 has 1 child: [7293]

• For acquiring the process list, you’ll need to capture the output of ps -e -opid,ppid,comm.
This output looks like:

PID PPID COMMAND
9024 9023 zsh

19560 9024 ps

• If a parent has one child you must print child, is there are more than one
print children;

• The process list must be numerically sorted, so you start with pid 0 andwork
your way up.

Here is a Perl version to help you on your way (or to create complete and utter
confusion).

Listing 8.5. Processes in Perl

#!/usr/bin/perl -l
my (%child, $pid, $parent);
my @ps=`ps -e -opid,ppid,comm`; # Capture the output from `ps`
foreach (@ps[1..$#ps]) { # Discard the header line

($pid, $parent, undef) = split; # Split the line, discard 'comm'
push @{$child{$parent}}, $pid; # Save the child PIDs on a list

}

Exercises 95

Walk through the sorted PPIDs
foreach (sort { $a <=> $b } keys %child) {

print "Pid ", $_, " has ", @{$child{$_}}+0, " child",
@{$child{$_}} == 1 ? ": " : "ren: ", "[@{$child{$_}}]";

}

Q30. (5) Word and letter count

1. Write a small program that reads text from standard input and performs the fol-
lowing actions:

1. Count the number of characters (including spaces);

2. Count the number of words;

3. Count the numbers of lines.

In other words implement wc(1) (check you local manual page), however you only
have to read from standard input.

Q31. (4) Uniq

1. Write a Go program that mimics the function of the Unix uniq command. This
program should work as follows, given a list with the following items:
'a' 'b' 'a' 'a' 'a' 'c' 'd' 'e' 'f' 'g'

it should print only those item which don’t have the same successor:

'a' 'b' 'a' 'c' 'd' 'e' 'f'

Listing 8.8 is a Perl implementation of the algorithm.

Listing 8.8. uniq(1) in Perl

#!/usr/bin/perl
my @a = qw/a b a a a c d e f g/;
print my $first = shift @a;
foreach (@a) {

if ($first ne $_) { print; $first = $_; }
}

Q32. (9) Quine A Quine is a program that prints itself.

1. Write a Quine in Go.

Q33. (8) Echo server

1. Write a simple echo server. Make it listen to TCP port number 8053 on localhost.
It should be able to read a line (up to the newline), echo back that line and then
close the connection.

2. Make the server concurrent so that every request is taken care of in a separate
goroutine.

Q34. (9) Number cruncher

• Pick six (6) random numbers from this list:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 50, 75, 100

Numbers may be picked multiple times;

96 Chapter 8: Communication

• Pick one (1) random number (i) in the range: 1 . . . 1000;

• Tell how, by combining the first 6 numbers (or a subset thereof) with the operators
+,−,∗ and /, you can make i;

An example. We have picked the numbers: 1, 6, 7, 8, 8 and 75. And i is 977. This can be
done in many different ways, one way is:

((((1 ∗ 6) ∗ 8) + 75) ∗ 8)− 7 = 977

or
(8 ∗ (75 + (8 ∗ 6)))− (7/1) = 977

1. Implement a number cruncher that works like that. Make it print the solution in
a similar format (i.e. output should be infix with parenthesis) as used above.

2. Calculate all possible solutions and show them (or only show howmany there are).
In the example above there are 544 ways to do it.

Q35. (8) *Finger daemon

1. Write a finger daemon that works with the finger(1) command.

From the Debian package description:

Fingerd is a simple daemon based on RFC 1196 [36] that provides an
interface to the “finger” program at most network sites. The program
is supposed to return a friendly, human-oriented status report on either
the system at the moment or a particular person in depth.

Stick to the basics and only support a username argument. If the user has a .plan
file show the contents of that file. So your program needs to be able to figure out:

• Does the user exist?

• If the user exists, show the contents of the .plan file.

Answers 97

Answers

A29. (8) Processes

1. There is lots of stuff to do here. We can divide our program up in the following
sections:

1. Starting ps and capturing the output;

2. Parsing the output and saving the child PIDs for each PPID;

3. Sorting the PPID list;

4. Printing the sorted list to the screen

In the solution presented below, we’ve used a map[int][]int, i.e. a map indexed
with integers, pointing to a slice of ints – which holds the PIDs. The builtin append
is used to grow the integer slice.

A possible program is:

Listing 8.6. Processes in Go

package main
import ("fmt"; "os/exec"; "sort"; "strconv"; "strings")

func main() {
ps := exec.Command("ps", "-e", "-opid,ppid,comm")
output, _ := ps.Output()
child := make(map[int][]int)
for i, s := range strings.Split(string(output), "\n") {

if i == 0 { continue } // Kill first line
if len(s) == 0 { continue } // Kill last line
f := strings.Fields(s)
fpp, _ := strconv.Atoi(f[1]) // Parent's pid
fp, _ := strconv.Atoi(f[0]) // Child's pid
child[fpp] = append(child[fpp], fp)

}
schild := make([]int, len(child))
i := 0
for k, _ := range child { schild[i] = k; i++ }
sort.Ints(schild)
for _, ppid := range schild {

fmt.Printf("Pid %d has %d child", ppid, len(child[ppid
]))

if len(child[ppid]) == 1 {
fmt.Printf(": %v\n", child[ppid])
continue

}
fmt.Printf("ren: %v\n", child[ppid])

}
}

98 Chapter 8: Communication

A30. (5) Word and letter count

1. The following program is an implementation of wc(1).

Listing 8.7. wc(1) in Go

package main

import (
"os"
"fmt"
"bufio"
"strings"

)

func main() {
var chars, words, lines int

r := bufio.NewReader(os.Stdin) ..0

for {

switch s, ok := r.ReadString('\n'); true { ..1

case ok != nil: ..2

fmt.Printf("%d %d %d\n", chars, words, lines);
return

default: ..3

chars += len(s)
words += len(strings.Fields(s))
lines++

}
}

}

..0 Start a new reader that reads from standard input;

..1 Read a line from the input;

..2 If we received an error, we assume it was because of a EOF. So we print the
current values;

..3 Otherwise we count the charaters, words and increment the lines.

A31. (4) Uniq

1. The following is a uniq implementation in Go.

Listing 8.9. uniq(1) in Go

package main

import "fmt"

func main() {
list := []string{"a", "b", "a", "a", "c", "d", "e", "f"}

Answers 99

first := list[0]

fmt.Printf("%s ", first)
for _, v := range list[1:] {

if first != v {
fmt.Printf("%s ", v)
first = v

}
}

}

A32. (9) Quine

1. The following Quine is from Russ Cox:

/* Go quine */
package main
import "fmt"
func main() {
fmt.Printf("%s%c%s%c\n", q, 0x60, q, 0x60)
}
var q = `/* Go quine */
package main
import "fmt"
func main() {
fmt.Printf("%s%c%s%c\n", q, 0x60, q, 0x60)
}
var q = `

A33. (8) Echo server

1. A simple echo server might be:

Listing 8.10. A simple echo server

package main
import ("net"; "fmt";"bufio")

func main() {
l, err := net.Listen("tcp", "127.0.0.1:8053")
if err != nil {

fmt.Printf("Failure to listen: %s\n", err.Error())
}
for {

if c, err := l.Accept(); err == nil { Echo(c) }
}

}

100 Chapter 8: Communication

func Echo(c net.Conn) {
defer c.Close()
line, err := bufio.NewReader(c).ReadString('\n')
if err != nil {

fmt.Printf("Failure to read: %s\n", err.Error())
return

}
_, err = c.Write([]byte(line))
if err != nil {

fmt.Printf("Failure to write: %s\n", err.Error())
return

}
}

When started you should see the following:

% nc 127.0.0.1 8053
Go is *awesome*
Go is *awesome*

2. To make the connection handling concurrent we only need to change one line in
our echo server, the line:

if c, err := l.Accept(); err == nil { Echo(c) }

becomes:

if c, err := l.Accept(); err == nil { go Echo(c) }

A34. (9) Number cruncher

1. The following is one possibility. It uses recursion and backtracking to get an an-
swer.

Listing 8.11. Number cruncher

package main

import ("fmt"; "strconv"; "flag")

const (
_ = 1000 * iota
ADD
SUB
MUL
DIV
MAXPOS = 11

)

var mop = map[int]string{ADD: "+", SUB: "-", MUL: "*", DIV: "/"}
var (

ok bool
value int

Answers 101

)

type Stack struct {
i int
data [MAXPOS]int

}

func (s *Stack) Reset() { s.i = 0 }
func (s *Stack) Len() int { return s.i }
func (s *Stack) Push(k int) { s.data[s.i] = k; s.i++ }
func (s *Stack) Pop() int { s.i--; return s.data[s.i] }

var found int
var stack = new(Stack)

func main() {
flag.Parse()
list := []int{1, 6, 7, 8, 8, 75, ADD, SUB, MUL, DIV}
magic, ok := strconv.Atoi(flag.Arg(0)) // Arg0 is i
if ok != nil { return }
f := make([]int, MAXPOS)
solve(f, list, 0, magic)

}

func solve(form, numberop []int, index, magic int) {
var tmp int
for i, v := range numberop {

if v == 0 { goto NEXT }
if v < ADD { // it's a number, save it

tmp = numberop[i]
numberop[i] = 0

}
form[index] = v
value, ok = rpncalc(form[0 : index+1])

if ok && value == magic {
if v < ADD {

numberop[i] = tmp // reset and go on
}
found++
fmt.Printf("%s = %d #%d\n", rpnstr(form[0:

index+1]), value, found)
}

if index == MAXPOS-1 {
if v < ADD {

numberop[i] = tmp // reset and go on
}
goto NEXT

}

102 Chapter 8: Communication

solve(form, numberop, index+1, magic)
if v < ADD {

numberop[i] = tmp // reset and go on
}

NEXT:
}

}

func rpnstr(r []int) (ret string) { // Convert rpn to infix
notation

s := make([]string, 0) // Still memory intensive
for k, t := range r {

switch t {
case ADD, SUB, MUL, DIV:

a, s := s[len(s)-1], s[:len(s)-1]
b, s := s[len(s)-1], s[:len(s)-1]
if k == len(r)-1 {

s = append(s, b+mop[t]+a)
} else {

s = append(s, "("+b+mop[t]+a+")")
}

default:
s = append(s, strconv.Itoa(t))

}
}
for _, v := range s { ret += v }
return

}

func rpncalc(r []int) (int, bool) {
stack.Reset()
for _, t := range r {

switch t {
case ADD, SUB, MUL, DIV:

if stack.Len() < 2 { return 0, false }
a := stack.Pop()
b := stack.Pop()
if t == ADD { stack.Push(b + a) }
if t == SUB {

// disallow negative subresults
if b-a < 0 {

return 0, false
}
stack.Push(b - a)

}
if t == MUL { stack.Push(b * a) }
if t == DIV {

if a == 0 {
return 0, false

}

Answers 103

// disallow fractions
if b%a != 0 {

return 0, false
}
stack.Push(b / a)

}
default:

stack.Push(t)
}

}
if stack.Len() == 1 { // there is only one!

return stack.Pop(), true
}
return 0, false

}

2. When starting permrec we give 977 as the first argument:
% ./permrec 977
1+(((6+7)*75)+(8/8)) = 977 #1
... ...
((75+(8*6))*8)-7 = 977 #542
(((75+(8*6))*8)-7)*1 = 977 #543
(((75+(8*6))*8)-7)/1 = 977 #544

A35. (8) *Finger daemon

1. Supply code and it may get included here.

A Colophon

This work was created with LaTEX. The main text is set in the Google Droid fonts. All type-
writer text is typeset in DejaVu Mono.

Contributors

The following people have helped to make this book what it is today.

• Miek Gieben <miek@miek.nl>;

• JC van Winkel;

• Xing Xing, Chinese translation, 这里是中文译本

http://www.mikespook.com/learning-go/

Help with proof reading, checking exercises and text improvements (no particular order
and either real name or an alias): Andrey Mirtchovski, Anthony Magro, Babu Sreekanth,
Ben Bullock, Bob Cunningham, Brian Fallik, Cecil New, Damian Gryski, Dan Kortschak, Filip
Zaludek, Haiping Fan, Jaap Akkerhuis, JC van Winkel, Jeroen Bulten, Jinpu Hu, Jonathan
Kans,Makoto Inoue,Mayuresh Kathe,Michael Stapelberg, Olexandr Shalakhin, Paulo Pinto,
Peter Kleiweg, RusselWinder, Sonia Keys, Stefan Schroeder, Thomas Kapplet, T.J. Yang,Uriel,
Xing Xing.

Miek Gieben

MiekGieben has amaster’s degree in Computer Science from
the Radboud University Nijmegen (Netherlands). He is in-
volved in the development and now the deployment of the
DNSSEC protocol – the successor of the DNS and as such co-
authored [10].

After playing with the language Erlang, Go was the first con-
current language that actually stuck with him.

He fills his spare timewith coding in, andwriting of Go. He is
the maintainer of the Go DNS library: https://github.com/
miekg/godns. He maintains a personal blog on http://www.
miek.nl and tweets under the name @miekg. The postings and
tweets may sometimes actually have to do something with Go.

License and copyright

This work is licensed under the Attribution-NonCommercial-ShareAlike 3.0 Unported Li-
cense. To viewa copyof this license, visit http://creativecommons.org/licenses/by-nc-sa/

<miek@miek.nl>
http://www.mikespook.com/learning-go/
https://github.com/miekg/godns
https://github.com/miekg/godns
http://www.miek.nl
http://www.miek.nl
http://creativecommons.org/licenses/by-nc-sa/3.0/

License and copyright 105

3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, Cal-
ifornia, 94105, USA.
All example code used in this book is hereby put in the public domain.

©Miek Gieben – 2010, 2011.

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

B Index

array
capacity, 21
length, 21
multidimensional, 20

buffered, 90
built-in

append, 19, 22
cap, 19
close, 19
complex, 19
copy, 19, 22
delete, 19
imag, 19
len, 19
make, 19, 59
new, 19, 59
panic, 19
print, 19
println, 19
real, 19
recover, 19

channel, 83
blocking read, 84
blocking write, 84
non-blocking read, 84
non-blocking write, 84
unbuffered, 84

channels, 6, 83
closure, 35
complex numbers, 19

deferred list, 35
duck typing, 71

field, 62
anonymous, 62

fields, 61
function

as values, 36
call, 62
literal, 35
literals, 36

generic, 74
goroutine, 82

goroutines, 6

interface, 70
set of methods, 70
type, 70
value, 70

io.Reader, 91

keyword
break, 13, 15
continue, 16
default, 18
defer, 35
else, 14
fallthrough, 17
for, 15
go, 82
goto, 15
if, 13
import, 49
iota, 10
map, 23

add elements, 23
existence, 23
remove elements, 23

package, 48
range, 16, 23

on maps, 17, 23
on slices, 16

return, 13
select, 84
struct, 61
switch, 17
type, 61

label, 15
literal

composite, 20, 60

method, 30
method call, 62
methods

inherited, 63
MixedCaps, 50

named return parameters, 30
networking

Index 107

Dial, 93
nil, 58

operator
address-of, 58
and, 12
bit wise xor, 12
bitwise

and, 12
clear, 12
or, 12

channel, 83
increment, 58
not, 12
or, 12

package
bufio, 50, 53, 90
builtin, 19
bytes, 49
compress/gzip, 50
encoding/json, 54
even, 48
flag, 53
fmt, 19, 53
io, 53, 91
net/http, 54
os, 53
os/exec, 54, 92
reflect, 54, 76
ring, 50
sort, 53
strconv, 53
sync, 53
text/template, 54
unsafe, 54

parallel assignment, 9, 15
pass-by-value, 30
private, 49
public, 49

receiver, 30
reference types, 20
runes, 17

scope
local, 31

slice
capacity, 21
length, 21

string literal
interpreted, 11
raw, 11

tooling
go, 7

build, 8
test, 51

type assertion, 72
type switch, 71

variables
_, 9
assigning, 8
declaring, 8
underscore, 9

C Bibliography

[1] Haskell Authors. Haskell. http://www.haskell.org/, 1990.

[2] Inferno Authors. Inferno. http://www.vitanuova.com/inferno/, 1995.

[3] Plan 9 Authors. Plan 9. http://plan9.bell-labs.com/plan9/index.html, 1992.

[4] Plan 9 Authors. Limbo. http://www.vitanuova.com/inferno/papers/limbo.html,
1995.

[5] Mark C. Chu-Carroll. Google’s new language: Go. http://scienceblogs.com/
goodmath/2009/11/googles_new_language_go.php, 2010.

[6] D. Crockford. The application/json media type for javascript object notation (json).
http://www.ietf.org/rfc/rfc4627.txt, 2006.

[7] Brian Kernighan Dennis Ritchie. The C programming language, 1975.

[8] Ericsson Cooperation. Erlang. http://www.erlang.se/, 1986.

[9] Larry Wall et al. Perl. http://perl.org/, 1987.

[10] Kolkman&Gieben. Dnssec operational practices. http://www.ietf.org/rfc/rfc4641.
txt, 2006.

[11] Go Authors. Defer, panic, and recover. http://blog.golang.org/2010/08/
defer-panic-and-recover.html, 2010.

[12] Go Authors. Effective Go. http://golang.org/doc/effective_go.html, 2010.

[13] Go Authors. Go faq. http://golang.org/doc/go_faq.html, 2010.

[14] Go Authors. Go language specification. http://golang.org/doc/go_spec.html, 2010.

[15] Go Authors. Go package documentation. http://golang.org/doc/pkg/, 2010.

[16] Go Authors. Go release history. http://golang.org/doc/devel/release.html, 2010.

[17] Go Authors. Go tutorial. http://golang.org/doc/go_tutorial.html, 2010.

[18] Go Authors. Go website. http://golang.org/, 2010.

[19] Go Authors. Getting Started. http://golang.org/doc/install/, 2012.

[20] Go Community. Function accepting a slice of interface types. http://groups.google.
com/group/golang-nuts/browse_thread/thread/225fad3b5c6d0321, 2010.

[21] Go Community. Go issue 65: Compiler can’t spot guaranteed return in if statement.
http://code.google.com/p/go/issues/detail?id=65, 2010.

[22] James Gosling et al. Java. http://oracle.com/java/, 1995.

[23] LAMP Group at EPFL. Scala. http://www.scala-lang.org/, 2003.

http://www.haskell.org/
http://www.vitanuova.com/inferno/
http://plan9.bell-labs.com/plan9/index.html
http://www.vitanuova.com/inferno/papers/limbo.html
http://scienceblogs.com/goodmath/2009/11/googles_new_language_go.php
http://scienceblogs.com/goodmath/2009/11/googles_new_language_go.php
http://www.ietf.org/rfc/rfc4627.txt
http://www.erlang.se/
http://perl.org/
http://www.ietf.org/rfc/rfc4641.txt
http://www.ietf.org/rfc/rfc4641.txt
http://blog.golang.org/2010/08/defer-panic-and-recover.html
http://blog.golang.org/2010/08/defer-panic-and-recover.html
http://golang.org/doc/effective_go.html
http://golang.org/doc/go_faq.html
http://golang.org/doc/go_spec.html
http://golang.org/doc/pkg/
http://golang.org/doc/devel/release.html
http://golang.org/doc/go_tutorial.html
http://golang.org/
http://golang.org/doc/install/
http://groups.google.com/group/golang-nuts/browse_thread/thread/225fad3b5c6d0321
http://groups.google.com/group/golang-nuts/browse_thread/thread/225fad3b5c6d0321
http://code.google.com/p/go/issues/detail?id=65
http://oracle.com/java/
http://www.scala-lang.org/

Bibliography 109

[24] C. A. R. Hoare. Quicksort. http://en.wikipedia.org/wiki/Quicksort, 1960.

[25] C. A. R. Hoare. Communicating sequential processes (csp). http://www.usingcsp.com/
cspbook.pdf, 1985.

[26] Rob Pike. Newsqueak: A language for communicating with mice. http://swtch.com/
~rsc/thread/newsqueak.pdf, 1989.

[27] Rob Pike. The Go programming language, day 2. http://golang.org/doc/
{G}oCourseDay2.pdf, 2010.

[28] Rob Pike. The Go programming language, day 3. http://golang.org/doc/
{G}oCourseDay3.pdf, 2010.

[29] Bjarne Stroustrup. The C++ programming language, 1983.

[30] Ian Lance Taylor. Go interfaces. http://www.airs.com/blog/archives/277, 2010.

[31] Imran On Tech. Using fizzbuzz to find developers... http://imranontech.com/2007/
01/24/using-fizzbuzz-to-find-developers-who-grok-coding/, 2010.

[32] Wikipedia. Bubble sort. http://en.wikipedia.org/wiki/Bubble_sort, 2010.

[33] Wikipedia. Communicating sequential processes. http://en.wikipedia.org/wiki/
Communicating_sequential_processes, 2010.

[34] Wikipedia. Duck typing. http://en.wikipedia.org/wiki/Duck_typing, 2010.

[35] Wikipedia. Iota. http://en.wikipedia.org/wiki/Iota, 2010.

[36] D. Zimmerman. The finger user information protocol. http://www.ietf.org/rfc/
rfc1196.txt, 1990.

http://en.wikipedia.org/wiki/Quicksort
http://www.usingcsp.com/cspbook.pdf
http://www.usingcsp.com/cspbook.pdf
http://swtch.com/~rsc/thread/newsqueak.pdf
http://swtch.com/~rsc/thread/newsqueak.pdf
http://golang.org/doc/{G}oCourseDay2.pdf
http://golang.org/doc/{G}oCourseDay2.pdf
http://golang.org/doc/{G}oCourseDay3.pdf
http://golang.org/doc/{G}oCourseDay3.pdf
http://www.airs.com/blog/archives/277
http://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/
http://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/
http://en.wikipedia.org/wiki/Bubble_sort
http://en.wikipedia.org/wiki/Communicating_sequential_processes
http://en.wikipedia.org/wiki/Communicating_sequential_processes
http://en.wikipedia.org/wiki/Duck_typing
http://en.wikipedia.org/wiki/Iota
http://www.ietf.org/rfc/rfc1196.txt
http://www.ietf.org/rfc/rfc1196.txt

This page is intentionally left blank.

	Introduction
	Official documentation
	Origins
	Getting Go
	Getting Go for Windows
	Exercises
	Answers

	Basics
	Hello World
	Compiling and running code
	Settings used in this book
	Variables, types and keywords
	Operators and built-in functions
	Go keywords
	Control structures
	Built-in functions
	Arrays, slices and maps
	Exercises
	Answers

	Functions
	Scope
	Multiple return values
	Named result parameters
	Deferred code
	Variadic parameters
	Functions as values
	Callbacks
	Panic and recovering
	Exercises
	Answers

	Packages
	Identifiers
	Documenting packages
	Testing packages
	Useful packages
	Exercises
	Answers

	Beyond the basics
	Allocation
	Defining your own types
	Conversions
	Exercises
	Answers

	Interfaces
	Methods
	Interface names
	A sorting example
	Exercises
	Answers

	Concurrency
	More on channels
	Exercises
	Answers

	Communication
	io.Reader
	Some examples
	Command line arguments
	Executing commands
	Networking
	Exercises
	Answers

	Colophon
	Contributors
	License and copyright

	Index
	Bibliography

